
Exploring the Type Inference Approach to Deforestation

Marie-Christine (Kirsten) Chevalier

Submitted in Partial Fulfillment of the Prerequisite for
Honors in Computer Science

May 2001

c© 2001 Marie-Christine Chevalier

The tree which moves some to tears of joy is in the eyes of
others only a green thing that stands in the way.

– William Blake

Contents

1 Type Inference and Deforestation 7
1.1 Haskell Notation . 7

1.1.1 Lambda Notation . 7
1.1.2 List Notation . 8
1.1.3 Types . 9
1.1.4 Higher-Order Functions . 10
1.1.5 Comments . 10

1.2 Modular and Monolithic Programs . 11
1.3 Deforestation In Theory . 13
1.4 Deforestation In Practice . 13

1.4.1 Wadler’s Deforestation Algorithm . 13
1.4.2 Shortcut Deforestation . 16
1.4.3 Warm Fusion . 19

1.5 The Type Inference Approach . 21
1.6 Implementing the Type Inference Approach 22

2 Translating Between Haskell and F 25
2.1 Core and the GHC Front-End . 25
2.2 Differences Between Core and F . 26
2.3 The Core-to-F Translator . 30
2.4 The F-to-Haskell Translator . 32

3 Tools for F 39
3.1 The F Typechecker . 39
3.2 The F Interpreter . 44

4 Shortcut Deforestation 51
4.1 The List Abstraction Algorithm . 51
4.2 Postprocessing Steps . 52
4.3 Applying the Shortcut Rule . 55

5 Conclusions and Future Work 57
5.1 Working Examples . 57
5.2 Future Work . 58

5.2.1 Type-Based Cloning . 58

3

4 CONTENTS

5.2.2 Beyond Lists . 59
5.2.3 Benchmarking . 59
5.2.4 Integration with GHC . 59

A Haskell Code 63
A.1 List of Modules . 63
A.2 Main.hs . 63
A.3 RunTypeInference.hs . 65
A.4 ParseFile.hs . 69
A.5 TransCore.hs . 71
A.6 Typecheck.hs . 74
A.7 Eval.hs . 77
A.8 Table.hs . 87
A.9 Result.hs . 88
A.10 F2Haskell.hs . 90
A.11 TypeInference.hs . 93
A.12 Core.hs . 110
A.13 ThisUtil.hs . 119
A.14 ThisUnique.hs . 123
A.15 MonadTransformer.hs . 125
A.16 CountIO.hs . 127
A.17 PrettyCore.hs . 128

B Running Test Cases 131

Acknowledgments

I would like to thank the following people:
Olaf Chitil, for doing the work upon which this thesis is based, and for letting me have

access to his work,
My advisor, Lyn Turbak, for always being there – literally,
Kate Golder, for the ParseFile code,
The Committee on Curriculum and Instruction and the Jerome A. Schiff Foundation, for

their financial support,
David Farris, for his emotional support,
My parents, for their various improbable actions leading up to the the even more im-

probable event of my existence,
Lari Ranbom, for her constant reminders to write my thesis, and for helpful suggestions

such as “You should write it in the form of a romance novel,”
Marianne Terrot, Emily Braunstein, Katie Hayes, and Sheree Schrager, for suggesting

many excellent thesis titles, all of which I promptly rejected,
Alexandra Dunne-Bryant, for driving the Kinko’s Express,
Alan Turing, Alonzo Church, John von Neumann, John Backus, John McCarthy, Richard

Stallman, Donald Knuth, Leslie Lamport, Linus Torvalds, Paul Hudak, Simon Peyton Jones,
and Phil Wadler, without whom this thesis would not be possible,

And finally, the many trees – both physical and virtual – who sacrificed their lives for
this thesis.

5

6 CONTENTS

Chapter 1

Type Inference and Deforestation

Modularity is a good technique for designing programs that are easy to understand and
maintain. However, modularity can make programs run less efficiently, in part due to the
creation of intermediate data structures. Deforestation is a program transformation that
eliminates some intermediate data structures. Various techniques for deforestation have
been proposed, but many of them rely on the input program being in a specific, restricted
form. The type inference approach to deforestation lessens these restrictions.

In his Ph.D thesis, Olaf Chitil described type-inference-based deforestation [Chi00]. He
also developed a prototype implementation of the core part of it, the list abstraction al-
gorithm. In this paper, I describe how I implemented some of the remaining stages of
type-inference-based deforestation, and adapted it to work on Haskell programs and pro-
duce Haskell programs.

1.1 Haskell Notation

The type-inference-based deforestation system is implemented in the Haskell programming
language, and I will use Haskell for the examples in this paper. This section explains certain
features of Haskell, for those unfamiliar with the language. Readers who are familiar with
Haskell may skip it.

1.1.1 Lambda Notation

The notation (\ x1 x2 . . . xn -> <body>) denotes a function that takes n arguments,
x1 through xn, and returns <body>. The \ is Haskell’s representation of a λ, which is the
symbol conventionally used to introduce a function in functional languages.

In Haskell, functions can be curried. We say that a function of n arguments is curried if,
given m arguments (where m < n), it returns a function that takes n −m arguments. For
example, suppose we wanted to define a curried function to add up two numbers:

add x y = x + y

The call (add 3) would give us back a function that takes one argument, y, and returns (3
+ y). The call ((add 3) 2) would be equivalent to (add 3 2), which evaluates to 5.

7

8 CHAPTER 1. TYPE INFERENCE AND DEFORESTATION

We say that an application to m arguments of a curried function that takes n arguments
(in total) is saturated if n = m. For the above example, (add 3 2) would be saturated, but
(add 2) would not be.

A function that takes multiple arguments can do so either via currying, or via tupling.
A tuple is a way to group together several elements (a tuple of n elements is known as an
n-tuple). Tuples provide another way for a function to take more than one argument, or to
return more than one result: for example, the following function takes a 2-tuple (that is, a
pair) of numbers and returns a 2-tuple of their sum and product:

sumandproduct (x, y) = (x + y, x * y)

The call (sumandproduct (5, 42)) would return the tuple (47, 210).

1.1.2 List Notation

A list is either the empty list, written as [], or the result of consing an element of type α
onto a list whose elements are all of type α, using the infix : operator (cons). For example,
(1:(2:[])) is a list of the integers one and two. The infix operator : can be used as a
prefix operator by writing it as (:). We say that (:) and nil are the constructors for the
List datatype.

The list (x0:(x1: . . . (xn:[]))) can also be written as [x0, x1, . . ., xn], or visually
represented as a tree of constructor applications (see Figure 1.1).

:

:

.
.
.

[]

x0

x1

:

xn

Figure 1.1: An sample list

Here are two examples of functions that consume and produce lists:1

1Haskell provides a shorthand notation [m..n] for (fromTo m n).

1.1. HASKELL NOTATION 9

fromTo x y = (if (x > y) then

[]

else

(x:(fromTo (x + 1) y)))

sum l = (case l of

[] -> 0

(x:xs) -> (x + (sum xs)))

The sum function is defined using pattern-matching on its list argument. The case

statement says that if the input list, l, is the empty list, then return 0; otherwise, if the list
consists of an element x consed onto another list xs, then return x plus the sum of xs.

1.1.3 Types

Haskell requires every expression to have a well-defined type. The type of a curried function
that takes n arguments, whose types are t1, t2, . . ., tn, and that returns a result of type
t, is written as (t1 → t2 → . . . → tn → t). The → operator associates to the right. For
example, the type of the + function, that takes two Ints and returns an Int, is (Int → Int

→ Int). The right-associativity of the → operator means that given an Int, + will return
a function of type (Int → Int), and given two Ints, + will return an Int.

The type of a list whose elements have type t is written as [t], and the type of an n-tuple
whose elements have types t1 . . . tn is written as (t1, . . ., tn).

Another data type is the record type. When defining a new type, it can be declared as
a record: an object that, like a tuple, bundles together several values (fields), but unlike a
tuple, associates names with these fields. For example, we could define a type to represent
a person:

data Person = Person { name :: String,

age :: Int

}
To create a new element of this type, then refer to its fields, we could write:

let bob = Person {name="Bob", age=42 }
in

(name bob) ++ " is " ++ (show (age bob))

Some types in Haskell are polymorphic – that is, their definitions include type variables,
which can range over all possible types. For example, the type of the map function (explained
below) is (∀ α β . ((α → β → β) → [α] → [β])). The ∀ is read “for all”, and this type would
be written in Haskell as ((a -> b -> b) -> [a] -> [b]) (the ∀ is implicit).

Haskell does not require users to write explicit types for the functions they define, but it
is possible to do so, using the :: (pronounced “has type”) operator to separate a function
name and its type. Here are type declarations for the fromTo and sum functions from the
previous section:

10 CHAPTER 1. TYPE INFERENCE AND DEFORESTATION

fromTo :: Int -> Int -> [Int]

sum :: [Int] -> Int

1.1.4 Higher-Order Functions

Functional languages usually provide certain higher-order functions – functions which take
other functions as arguments. Two of the most common ones are map and foldr.

The map function takes a function f, of type (α → β), and a list l, of type [α], and
returns a list of type [β], consisting of the results of applying f to each element of l. For
example, if f were square, which has type (Int → Int), and l were [3, 4, 5], which has
type [Int], the resulting list would also have type [Int]. Figure 1.2 illustrates how (map

square [3, 4, 5]) is computed.

:

:3

4

[]

:

5

=>
9

16

25
[]

:

:

:square

square

square

Figure 1.2: (map square [3, 4, 5])

The function foldr takes three arguments: f, whose type is (α → β → β), start,
whose type is β, and a list l, whose type is [α], and returns a result of type β. For example,
if f were +, which has type (Int → Int → Int), start were 0, which has type Int, and
l were [3, 4, 5], the result would have type Int.

(foldr f start l) starts by combining the last element in l with start, using f, and
continues from right to left, combinining each element in l with the accumulated result.
Essentially, it replaces the constructors (:) and [] in l with f and start, and evaluates
the result. Figure 1.3 illustrates how (foldr + 0 [3, 4, 5]) is computed.

1.1.5 Comments

In Haskell, a comment begins with two dashes and continues to the end of a line:

-- No comment.

1.2. MODULAR AND MONOLITHIC PROGRAMS 11

:

:3

4

[]

:

5

3

4

5

+

+

+

0

=> => 12

Figure 1.3: (foldr + 0 [3, 4, 5])

1.2 Modular and Monolithic Programs

A modular program is one that is defined in terms of many smaller parts, called modules.
The division of a program into modules is determined by the natural decomposition of the
problem the program solves, the potential for reusing modules in other programs, and the
presence or absence of any pre-existing modules that can be called upon. A monolithic
program is the opposite of a modular program: it is defined as a single, indivisible unit, with
little or no potential for reusing parts of it or using existing parts from other programs.

For example, consider two programs to compute the sum of squares of the integers be-
tween m and n. In Haskell notation, here are two possible definitions:

sos m n = (foldr + 0 (map square (fromTo m n)))

sos m n = if (m > n) then

0

else

((square m) + (sos (m + 1) n))

The first definition is more concise, because it uses the higher-order functions foldr and
map, which encapsulate the recursion expressed explicitly in the second definition. However,
the first definition creates two intermediate lists – (fromTo m n) and (map square (fromTo

m n)) – whereas the second definition creates no lists. Figure 1.4 shows the computation
of (sos 3 5) for the first definition of sos. Compare this to computation of the second
definition of sos, depicted in Figure 1.5.

Modular definitions tend to create intermediate data structures like those shown in Fig-
ure 1.4. Functional programmers embrace this style of programming, in which different parts
of a program use lists and other tree-shaped data structures to communicate with each other.
As John Hughes puts it, such data structures are the “glue” that holds the modular parts
of a program together [Hug89]. But creating these structures uses time and space which
would not be necessary for executing the equivalent monolithic definitions. Function calls
themselves add extra overhead as well. Although modularity makes programs easier for hu-
mans to understand, it makes them harder (more expensive, in terms of time and space) for
computers to execute, for exactly the same reasons.

12 CHAPTER 1. TYPE INFERENCE AND DEFORESTATION

:

:3

4

[]

:

5

=>

:

:

[]

:

9

16

25

=>
9

+

+

+

0

16

25

=> 50

Figure 1.4: (sos 3 5) – modular definition

(sos 3 5)

+

+

+

9

16

25

(sos 4 5)

(sos 5 5)

(sos 6 5)

0

Figure 1.5: (sos 3 5) – monolithic definition

1.3. DEFORESTATION IN THEORY 13

1.3 Deforestation In Theory

The goal of deforestation is to reduce this tradeoff between efficiency and modularity. De-
forestation is a program transformation to eliminate certain intermediate data structures,
turning programs like the first definition of sos into programs like the second definition.
The idea is that an algorithm can determine which data structures are actually essential to
performing the computation at hand, and which are just there to faciliate modularity – call
the second kind virtual data structures. Then, it can rewrite the program to fuse each com-
position of a list-consuming function with a list-producing function into a single function,
eliminating the virtual lists.

1.4 Deforestation In Practice

1.4.1 Wadler’s Deforestation Algorithm

Deforestation was first proposed by Philip Wadler, who coined the term “deforestation” for a
process that removes intermediate data structures such as lists and trees. He introduced an
algorithm for fusing together compositions of functions, which assumed that the functions
themselves created no intermediate data structures (other than those produced and consumed
by the functions) [Wad90]. This algorithm revolved around unfolding function calls in an
expression with the goal of transforming it into a case expression whose scrutinee is a data
constructor application – i.e., of this form:2

case (C arg_1 ... arg_n) of

p_1 -> e_1

...

p_n -> e_n

where one of the pi’s matches (C arg1 . . . argn). It uses a set of rewrite rules, of which
the central one is the “case-on-constructor” rule. For example, this rule would reduce the
following expression:

case (C e1 e2 e3) of

A arg1 arg2 -> r1

B arg1 arg2 arg3 -> r2

C arg1 arg2 arg3 -> r3

to r3, the right-hand-side of the clause that matches the scrutinee, with every instance of
arg1, arg2, and arg3 replaced with e1, e2, and e3, respectively. As a result, the data
structure represented by (C e1 e2 e3) is never computed.

Here is an example of Wadler’s algorithm in action. Consider the modular definition of
sos from before:

sos m n = (foldr + 0 (map square (fromTo m n)))

2The notation arg n in code is equivalent to argn in text.

14 CHAPTER 1. TYPE INFERENCE AND DEFORESTATION

For Wadler’s algorithm to work, this definition has to be written in terms of specialized
versions of map and foldr (this step isn’t hard to do automatically):

mapsquare l = (case l of

[] -> []

(x:xs) -> (square x):(mapsquare xs))

sum l = (case l of

[] -> 0

(y:ys) -> (y + sum ys))

fromTo x y = (case (x > y) of

True -> []

False -> (x:(fromTo (x + 1) y)))

sos m n = (sum (mapsquare (fromTo m n)))

As a first step, the deforestation algorithm clones and β-reduces3 the definitions of sum,
mapsquare, and fromTo:

sos m n = (case

(case

(case (m > n) of

True -> []

False -> (m:(fromTo (m + 1) n)))) of

[] -> []

(x:xs) -> (square x):(mapsquare xs))) of

[] -> 0

(y:ys) -> (y + sum ys))

Next, it distributes the middle case statement:

sos m n = (case

(case (m > n) of

True -> (case [] of

[] -> []

(x:xs) -> (square x):(mapsquare xs))

False -> (case (m:(fromTo (m + 1) n)) of

[] -> []

(x:xs) -> (square x):(mapsquare xs))) of

[] -> 0

(y:ys) -> (y + sum ys))

We can simplify the two innermost case statements:

3To β-reduce a function application, ((λparam1 . . . paramn → body)arg1 . . . argn), is to substitute
arg1 . . . argn for param1 . . . paramn in body, resulting in a new expression body′, and then replace the
original function application with body′.

1.4. DEFORESTATION IN PRACTICE 15

sos m n = (case

(case (m > n) of

True -> []

False -> (square m):

(mapsquare (fromTo (m + 1) n))) of

[] -> 0

(y:ys) -> (y + sum ys))

and distribute what is now the outermost case statement:

sos m n = (case (m > n) of

True -> (case [] of

[] -> 0

(y:ys) -> (y + sum ys))

False -> (case (square m):

(mapsquare (fromTo (m + 1) n)) of

[] -> 0

(y:ys) -> (y + sum ys)))

Simplifying as before, we get:

sos m n = (case (m > n) of

True -> 0

False -> (square m) +

(sum (mapsquare (fromTo (m + 1) n))))

This expression contains a renaming of the original expression: (sum (mapsquare (fromTo

(m + 1) n))). If we kept unfolding function calls at this point, we would go into an infinite
regress. Instead, we observe that the problematic expression – (sum (mapsquare (fromTo

(m + 1) n))) – is exactly the expression we just derived, with (m + 1) substituted for m

– in other words, it is a call to the original function, sos. We take advantage of this and
replace the renamed expression with a recursive call to sos:

sos m n = (case (m > n) of

True -> 0

(x:xs) -> (square m) + (sos (m + 1) n))

We have successfully derived a definition for sos that creates no intermediate data structures.

It turns out that in the presence of recursive function definitions, Wadler’s algorithm as
stated may not terminate. Wadler solved this problem by requiring all individual function
definitions to be in “treeless form” – essentially, to create no intermediate data structures. He
then showed that any composition of treeless functions could be fused into a single function
definition by a terminating sequence of rewrite steps (like those shown above).

16 CHAPTER 1. TYPE INFERENCE AND DEFORESTATION

1.4.2 Shortcut Deforestation

Wadler’s algorithm was far too restrictive to be applicable to real programs, so Andrew Gill,
John Launchbury, and Simon Peyton Jones later introduced shortcut deforestation, which
handles a different range of programs [GLP93, Gil96].

Shortcut deforestation centers around applying the following rule, known as the shortcut
rule.

foldr k z (build g) = g k z

Figure 1.6: The shortcut rule

Here, g is a list-valued expression that has been parameterized over its constructors.
That is, the list [1, 2, 3] would be written as (\ c n -> (c 1 (c 2 (c 3 n)))). build
is a function that takes such an abstract list and applies it to the list constructors (:) and
[] (cons and nil) – see Figure 1.7. The shortcut rule works by applying the abstract list
to the arguments of foldr. The insight here is that foldr works by uniformly replacing
the constructors in a list with other functions – see Figure 1.8. Likewise, build replaces
placeholders which mark where the constructors should go in a list with specific constructors,
(:) and [] – see Figure 1.7. So instead of constructing the list build g, we can directly
replace the placeholders with the functional arguments of foldr, shown in Figure 1.9.

(build (\ c n −> c

c

c

n

elt1

elt2

elt3

))

=> elt1

elt2

elt3

:

:

:

[]

Figure 1.7: Definition of build

(foldr k z ::

:

:

elt1

elt2

elt3 []

)

=> elt1

elt2

elt3

k

k

z

k

Figure 1.8: Definition of foldr

1.4. DEFORESTATION IN PRACTICE 17

(build (\ c n −> c

c

c

n

elt1

elt2

elt3

))(foldr k z

=> elt1

elt2

elt3

k

k

k

z

Figure 1.9: The shortcut rule

The list is eliminated when we insert the function arguments k and z directly in place
of the list’s constructors, rather than constructing the list and then combining its elements
with k and z. For the shortcut rule to deforest a program, all list-producing functions must
be written in terms of build and all list-consuming functions must be written in terms of
foldr.

As an example, consider applying the shortcut rule to the modular definition of sos, from
above. We first have to write the definition using foldr and build, and clone the definitions
of any functions that use foldr and build:

sos i j = (foldr + 0

(build

(\ c n ->

(foldr (\ x rest -> (c (square x) rest)) n

(build

-- ************

(\ c’ n’ ->

(let fromTo x y =

(if (x == y) then

n’

else (c’ x (fromTo (x + 1) y)))

in

(fromTo i j)))

-- ************

)))

))

The portion of the program between the dashed lines represents (map square (fromTo m

n)), and the portion between the starred lines represents (fromTo m n). Applying the
shortcut rule to the innermost foldr/build pair first, we get:

18 CHAPTER 1. TYPE INFERENCE AND DEFORESTATION

sos i j = (foldr + 0

(build (\ c n ->

((\ c’ n’ ->

(let fromTo x y =

(if (x == y) then

n’

else

(c’ x (fromTo (x + 1) y)))

in

(fromTo i j)))

(\ x rest -> (c (square x) rest))

n))))

After performing β-reduction on the application of (\ c’ n’ -> . . .), and then on the
application of (\ x rest -> (c (square x) rest)), we have:

sos i j = (foldr + 0

(build (\ c n ->

(let fromTo x y =

(if (x == y) then

n

else

(c (square x) (fromTo (x + 1) y)))

in

(fromTo i j)))))

Applying the shortcut rule to the remaining foldr/build pair, we get:

sos i j = ((\ c n ->

(let fromTo x y =

(if (x == y) then

n

else

(c (square x) (fromTo (x + 1) y)))

in

(fromTo i j)))

+

0)

After β-reduction, we have:

sos i j = (let fromTo x y = (if (x == y) then

0

else

((square x) + (fromTo (x + 1) y)))

in

(fromTo i j))

1.4. DEFORESTATION IN PRACTICE 19

This definition is equivalent to the original one, but creates no intermediate lists.
The problem with the shortcut method is that it is too restrictive. Although foldr is

commonly used in functional programs anyway, build is not, and merely exists to enable
deforestation. Requiring programmers to write code in the awkward foldr/build form de-
feats the purpose of deforestation, which is to allow programmers to write easy-to-understand
code and translate it into efficient code.

1.4.3 Warm Fusion

Warm fusion, developed by John Launchbury and Tim Sheard, is an attempt to increase the
applicability of shortcut deforestation by automatically translating recursive definitions into
foldr/build form [LS95]. The idea is to apply two transformation rules, buildify and cataify
(“cata” is another name for foldr) to automatically rewrite any functions which uniformly
produce lists in terms of build, and rewrite any functions which uniformly consume lists in
terms of foldr. Then the shortcut rule can be applied [Ném00].

The buildify rule works by first transforming an expression e which produces a list into
(build (\ c n -> (foldr c n e))). This expression is clearly equivalent to the original:
the expression (\ c n -> (foldr c n e)) abstracts over the list constructors in e, then
applying build substitutes (:) and [] back in. But now, the foldr can be pushed inside
the expression e, which may expose opportunities to perform the shortcut rule. For example,
consider applying buildify to the definition of map. We start with:

map f l = (case l of

[] -> []

(x:xs) -> (f x):(map f xs))

Wrapping a build/foldr around the definition, we get:

map f l = build (\ c n ->

(foldr c n

(case l of

[] -> []

(x:xs) -> (f x):(map f xs))

Pushing the foldr into the right-hand sides of the case clauses, we get:

map f l = build (\ c n ->

(case l of

[] -> (foldr c n [])

(x:xs) -> (foldr c n (f x):(map f xs))))

Now we can simplify the right-hand sides of the case clauses:

map f l = build (\ c n ->

(case l of

[] -> n

(x:xs) -> (c (f x) (foldr c n (map f xs)))

20 CHAPTER 1. TYPE INFERENCE AND DEFORESTATION

The right-hand side of the second clause still needs to be simplified further, since we would
like the foldr to be applied to a build. If we cloned the definition of map here, the argument
to foldr would indeed be an application of build, but then we could clone the recursive
call to map again – how would we know when to stop? To prevent this infinite regress, we
split the definition of map into a worker and a wrapper:

map f l = (build (mapWorker f l))

mapWorker f l c n = (case l of

[] -> n

(x:xs) -> (c (f x) (foldr c n (map f xs))))

Now that the definition of map is non-recursive, we can safely clone it:

map f l = (build (mapWorker f l))

mapWorker f l c n = (case l of

[] -> n

(x:xs) -> (c (f x) (foldr c n

(build (mapWorker f xs)))))

Simplifying the foldr application, we have:

map f l = (build (mapWorker f l))

mapWorker f l c n = (case l of

[] -> n

(x:xs) -> (c (f x) (mapWorker f xs c n)))

We have successfully transformed the definition of map into build form.
What about cataify? We want to take an expression e that consumes a list, and redefine

it in terms of foldr. The idea is that if we knew the value of e when the input list is []

– call it enil – and the value of e when the input list is (x:xs) for some x and xs – call it
econs – we could rewrite e as (λ xs -> (foldr econs enil xs)). We determine what econs

and enil are by applying e to [] and to (x:xs). For example, consider applying cataify to
the definition of and, the function that takes a list of booleans [b0, b1, . . . , bn] and returns (b0

&& b1 && . . . && bn), where && is the primitive and operator (logical conjunction). We
start with the definition of and:

and l = (case l of

[] -> True

(x:xs) -> (x && (and xs)))

We apply and to [] and to (x:xs) (where x is some variable of boolean type, and xs is some
variable of boolean list type) to get andnil and andcons:

and_nil = and [] = True

and_cons = and (x:xs) = (x && (and xs))

The definition of and cons, (x && (and xs)) can be expressed as the function (\ x xs ->
x && xs), which has the right type to be the first argument to foldr. This may seem like
magic, but is dictated by certain simple rules [Ném00]. Now that we know the values of
andnil and andcons, we can rewrite and in terms of foldr:

1.5. THE TYPE INFERENCE APPROACH 21

and l = (foldr (\ x xs -> x && xs) True l)

We have successfully rewritten and in terms of foldr.

As is clear even from these trivial examples, warm fusion is complicated. It is compu-
tationally expensive and difficult to implement. The idea of automatically deriving builds
is a good one, though, and we can improve on warm fusion by focusing on deriving builds.
The use of foldr is not problematic, since it commonly occurs in functional programs in
any case.

1.5 The Type Inference Approach

In 1999, Olaf Chitil introduced the type inference method for deforestation. Unlike the
shortcut method, the type inference method does not require the programmer to use explicit
builds; instead, it automatically infers where build should be applied, and then applies
the shortcut rule [Chi99, Chi00]. The core of this method is the list abstraction algorithm,
which takes a list-producing expression and returns an abstracted version of the expression,
which can then be passed as an argument to build. To illustrate this, we will return to the
sum-of-squares example. To refresh your memory, the definition of sos is as follows:

sos m n = (foldr + 0 (map square (fromTo m n)))

We first need to clone the definitions of map and fromTo (a preliminary stage of type-
inference-based deforestation, which I do not discuss here, can do this automatically):

sos x y = (foldr + 0

(foldr (\ x rest -> (square x):rest)

[]

(let fromTo x y = (if (x == y) then

[]

else

(x:(fromTo (x + 1) y)))

in

(fromTo x y))))

The list abstraction algorithm first abstracts the argument of the inner foldr over its list
constructors, replacing each instance of : or [] with variables c and n, respectively:

22 CHAPTER 1. TYPE INFERENCE AND DEFORESTATION

sos x y = (foldr + 0

(foldr (\ x rest -> (square x):rest)

[]

(build (\ c n ->

(let fromTo x y =

(if (x == y) then

n

else

(c x (fromTo (x + 1) y)))

in

(fromTo x y))))

Next, it processes the argument of the outer foldr:

sos x y = (foldr + 0

(build (\ c’ n’ ->

(foldr (\ x rest -> (c’ (square x) rest))

n’

(build (\ c n ->

(let fromTo x y =

(if (x == y) then

n

else

(c x (fromTo (x + 1) y)))

in

(fromTo x y)))))))

Now we can apply the shortcut rule to both foldr/build pairs, just as in the shortcut
rule example. Notice that the steps are very similar to those of shortcut deforestation.
The difference is that here, the placement of builds is inferred automatically, rather than
determined by the programmer.

1.6 Implementing the Type Inference Approach

Chitil developed a prototype implementation of the list abstraction algorithm. The prototype
accepts programs in F, a simple functional language based on Core, the intermediate language
used by the Glasgow Haskell Compiler (GHC). I made the following changes and additions
to the prototype:

• I modified the prototype to handle lists of arbitrary type (Chitil’s version only handled
lists of booleans.)

• I developed a program to translate Haskell programs into F. Initially, it was necessary
to write programs in the abstract syntax of F in order to run the list abstraction
algorithm, since there was no parser for F. This translator greatly eased writing test
programs.

1.6. IMPLEMENTING THE TYPE INFERENCE APPROACH 23

• I developed a typechecker and interpreter for F, in order to validate the results produced
by the list abstraction algorithm. These tools also facilitated testing.

• I implemented the shortcut rule for F.

• I developed a program to translate F programs back into Haskell, so that the results
of deforestation can be compiled in GHC and compared to the results of compiling the
original programs.

Now that these tools exist, with a little more work it should be relatively easy to run the
type inference algorithm on standard benchmarks and compare the resulting performance
gains to those resulting from other methods for deforestation.

The remainder of this paper describes the implementations of the tools I developed.
Chapter 2 describes the Core-to-F translator, along with the process of utilizing the GHC
front-end to get code from Haskell into Core, and the F-to-Haskell translator.. Chapter 3
describes the typechecker and interpreter for F, which are useful for validating the results of
the type inference algorithm. Chapter 4 describes the existing list abstraction algorithm and
my implementation of the shortcut rule for F. Chapter 5 indicates some possible directions
in which to expand on my work.

Figure 1.10 shows the stages of my extended version of type-inference-based deforestation.
Stages contributed by me are indicated with bold borders.

Haskell
GHC
�

front−end
Core−to−F
translator

List
abstraction

Core F

Shortcut
rule

F
interpreter

F type−
checker

F−to−
Haskell
translator

GHC

F F F

Haskell

F

Figure 1.10: The stages of type-inference-based deforestation

24 CHAPTER 1. TYPE INFERENCE AND DEFORESTATION

Chapter 2

Translating Between Haskell and F

Chitil’s prototype implementation of the type inference algorithm accepts programs written
in F, a modified and simplified version of Core. Core is the intermediate language used in the
Glasgow Haskell Compiler (GHC). With Chitil’s original system, the only way to test the
list abstraction algorithm was to write programs in the abstract syntax of F, and read the
resulting F programs to verify their correctness. This was extremely tedious and error-prone.
To address this issue, I wrote a Haskell-to-F translator, which exploits the GHC front-end
to compile a Haskell program into Core, then translates the resulting Core program into F.
In addition, I wrote a translator that prints an F abstract syntax tree as a Haskell program,
in order to ease verifying the results of the list abstraction algorithm. This chapter describes
these translators..

2.1 Core and the GHC Front-End

The GHC front-end is composed of several stages: the parser, the renamer, the typechecker,
and the desugarer. The parser converts the text of a Haskell program to a Haskell abstract
syntax tree (AST), and the renamer and typechecker each take a Haskell AST and return a
Haskell AST. The desugarer takes the renamed and typechecked Haskell AST and returns a
Core AST. The process is illustrated in Figure 2.1.

Parser Renamer

Typechecker Desugarer

Text Haskell

Haskell

Core
�

typed
Haskell

Figure 2.1: The GHC front-end

The syntax of Core is as given by the Haskell datatype definitions shown in Figure 2.2,

25

26 CHAPTER 2. TRANSLATING BETWEEN HASKELL AND F

with some additional definitions in Figure 2.3 (those definitions which are not particularly
enlightening are not shown).

Core expressions are a limited subset of Haskell expressions, and can either be a variable,
a literal (either a character, a string, a pointer, an integer, a word, a float, or a double), a
function application, a λ abstraction, a let expression, a case expression, a note, or a type.
A note is an expression coupled with a hint about it for the compiler, such as a directive
to inline it wherever possible. A type can be a type variable, a type application, a type
constructor application, a function type, a note type (analogous to a note expression) or a
forAll type.

data Expr var -- Expr is polymorphic over the type of identifiers
= Var Id -- includes data constructors
| Lit Literal -- i.e., integers and characters
| App (Expr var) (Arg var) -- Arg is a synonym for Expr
| Lam var (Expr var)
| Let (Bind var) (Expr var)
| Case (Expr var) var [Alt b]
-- The variable is bound to the case expression
-- DEFAULT case must be last, if it occurs at all

| Note Note (Expr var)
| Type Type

data Type
= TyVarTy TyVar
| AppTy Type Type
| TyConApp TyCon [Type]
| FunTy Type Type
| NoteTy TyNote Type
| ForAllTy TyVar Type

Figure 2.2: Syntax of the Core language

2.2 Differences Between Core and F

The syntax of F is shown in Figure 2.4. An F expression can either be a variable, a literal
(which can be either a character or an integer), a data constructor application, a function
application, a λ abstraction, a let expression, a case expression, or a type. (The syntax of
F could easily be extended to include other basic types, such as strings and floats.) A type
can be either a type variable, a type constructor application, a function type, or a for-all
type.

Chitil’s version of F did not include literals, literal patterns, or the DEFAULT pattern. The
only literals it supported were booleans, represented by applications of the data constructors
True and False to no arguments. Adding these was the only change to F necessary in order
to accurately represent Core.

2.2. DIFFERENCES BETWEEN CORE AND F 27

type Id = Var
data Var

= Var {
varName :: Name,
realUnique :: Int#, -- Key for fast comparison
varType :: Type,
varDetails :: VarDetails,

-- Indicates whether this Var is an ordinary
-- identifier or a type variable

varInfo :: IdInfo
-- Stores various information about this Var

}

data Name = Name {
n_sort :: NameSort, -- What sort of name it is
n_uniq :: Unique,
n_occ :: OccName, -- Its occurrence name
n_prov :: Provenance -- How it was made

}

data Bind varType = NonRec varType (Expr varType)
| Rec [(varType, (Expr varType))]

-- either a single binding, or a mutually recursive
-- list of bindings

type Alt varType = (AltCon, [varType], Expr varType)

data AltCon =
DataAlt DataCon -- a pattern can either be a data constructor,

| LitAlt Literal -- a literal,
| DEFAULT -- or the DEFAULT alternative, which matches any expression

Figure 2.3: Auxiliary types for Core syntax

28 CHAPTER 2. TRANSLATING BETWEEN HASKELL AND F

data Expr var
= Var Id
| Lit Literal
| Con Con [Arg var]
| App (Expr var) (Arg var)
| Lam var (Expr var)
| Let (Bind var) (Expr var)
| Case (Expr var) var [Alt var]
| Type Type

type Id = Var

data Var
= VarG {

varName :: Name,
realUnique :: Unique,
varType :: Type,
varDetails :: VarDetails

}

data Con = C Name
data Name = Named {

n_occ :: OccName,
n_uniq :: Unique

}

data Literal = MachChar Char | MachInt Integer

data Bind b = NonRec b (Expr b)
| Rec [(b, (Expr b))]

type Alt b = (Pat, [b], Expr b)
data Pat = ConPat Con | LitPat Literal | DEFAULT

data Type
= TyVarTy TyVar
| TyConApp TyCon [Type]
| FunTy Type Type
| ForAllTy TyVar Type

Figure 2.4: Syntax of the F language

2.2. DIFFERENCES BETWEEN CORE AND F 29

There are a number of other differences between Core and F. For one, the varInfo

field of the Var type in Core is missing in F, as it is used only for the optimizations GHC
performs. The Name type, used for the varName field of Var, includes the fields n sort

and n prov in Core which are not present in F’s Name type; these fields store information
about names which F doesn’t need. The Note expression type is missing in F, as are the
NoteTy and AppTy data types. Case patterns are represented slightly differently, because
data constructors are represented differently in the two languages. Core includes many more
types of literals than F does, and many more type constructors: the only type constructors
available in F are List, Tuple, Bool, Kind, Int, and Char (the last two were added by
me; see Chapter 5 for discussion of the possibility of adding more types to F). Finally, F
represents data constructor applications differently from function applications, and requires
data constructor applications to be saturated (that is, such that the number of arguments
is exactly the number the constructor demands). In Core, constructor applications and
function applications are superficially indistinguishable.

As an example, consider the simple Haskell expression shown in Figure 2.5 and its cor-
responding Core AST. (Suppose that consId, nilId, trueId, falseId, caseExpId, xId,
and xsId are properly defined Vars, nilDataCon and consDataCon are properly defined
DataCons, and lit1 is a properly defined Literal.)

case [1] of
[] -> True
(x:xs) -> False

Figure 2.5: A simple Haskell expression

(Case (App (App (Var consId) (Lit lit1))

(Var nilId))

(Var caseExpId)

[((DataAlt nilDataCon), [], (Var trueId)),

((DataAlt consDataCon),

[xId, xsId],

(Var falseId))])

Compare to this the equivalent F AST (as before, assume that any variable names represent
properly defined instances of the appropriate type):

(Case (Con consCon [(Lit lit1)])

(Var caseExpId)

[((ConPat nilCon), [], (Con trueCon [])),

((ConPat consCon),

[xId, xsId],

(Con falseCon []))])

30 CHAPTER 2. TRANSLATING BETWEEN HASKELL AND F

2.3 The Core-to-F Translator

The following section contains technical details about the Core-to-F translator, and is in-
tended for those who may be extending the system. The casual reader is advised to skip
it.

The translation from Core to F is mostly straightforward, except for the handling of data
constructors. Since data constructors are represented as variables in Core, many special
cases are necessary to translate them correctly. Eventually, it would be desirable to handle
constructors in a more general way, so that a wider range of constructors could be easily
handled.

The code for the first few cases of the translator is shown in Figure 2.61. The case
for Var has special cases for the data constructors included in F that have no arguments
– currently, True and False. Similarly, the case for App checks whether the operand is
a data constructor. This is done using special pattern-matching cases for applications of
Core’s cons and nil. An application of cons or nil is translated into a Core Con with the
corresponding constructor. True, False, cons, and nil are the only data constructors the
translator currently handles – any other data constructors are translated into variables. (The
correct behavior would actually be to signal an error if an unsupported data constructor is
encountered – this would entail only a minor change to the code.)

The remaining cases of the translator, which are straightforward, are shown in Figure 2.7.

Several of the auxiliary functions used by the trans function are shown in Figure 2.8.
As before, transAlt uses special cases in order to properly translate instances of cons and
nil in Case patterns. transName extracts the only two relevant fields – occNameString and
nameUnique – out of a Name, the object that, paired together with a Type, represents a Var.
transLit handles the only two types of literals supported in F – integers and characters –
and signals an error if a literal of any other type is found.

With the exception of the functions transTy, transCon, and transApp, whose definitions
are straightforward, the code in Figures 2.6, 2.7, and 2.8 constitutes the entire Core-to-F
translator. The translator returns an equivalent F program for any Core program restricted
to the basic data types that F includes (integers, characters, booleans, lists – tuples are
included in F but not yet implemented in the translator (it would be simple to add them)).
It has been successfully tested on many simple programs which manipulate lists.

As an example of the Core-to-F translator in action, consider the very simple Haskell
program shown in Figure 2.9, which maps the identity function onto the constant list [True].
I included explicit type annotations in order to make the resulting Core code as simple
as possible (without explicit types, the GHC typechecker would have inserted polymorphic
types for various functions, making the code more complicated.) The result of compiling this
program into Core is shown in Figure 2.10, pretty-printed in a Haskell-like syntax. Although
each function appears to have two definitions, these actually correspond to the worker and
wrapper of each function, which have different unique identifiers (the Core pretty-printer

1For clarity, throughout this document, the module name Core is substituted for the module name
CoreSyn, the actual name of the module that defines the syntax of Core, and the name F is substituted for
the name Core, the actual name of the module that defines the syntax of F. In addition, the name Expr is
substituted for CoreExpr, the name of the type representing expressions in both languages.

2.3. THE CORE-TO-F TRANSLATOR 31

trans :: Core.Expr -> F.Expr
trans (Core.Lit l) = (F.Lit (transLit l))
trans (Core.Var id) =
-- special cases for True and False

case (Id.idFlavour id) of
(IdInfo.DataConId con) ->

(if (con == TysWiredIn.trueDataCon) then
(F.Con F.true [])
else if (con == TysWiredIn.falseDataCon) then
(F.Con F.false [])
else
(F.Var (transId id)))

_ -> (F.Var (transId id))
trans a@(Core.App

(Core.App (Core.App (Core.Var var) ty1) arg1) arg2) =
-- special case for cons

case (Id.idFlavour var) of
(IdInfo.DataConId con) -> handleCons con a
(IdInfo.DataConWrapId con) -> handleCons con a
otherwise -> (transApp a)

where handleCons con a@(Core.App (Core.App
(Core.App
(Core.Var var) ty1)

arg1)
arg2) =

if (con == TysWiredIn.consDataCon) then
(F.Con F.cons [(trans ty1), (trans arg1), (trans arg2)])

else
(transApp a)

trans a@(Core.App (Core.Var var) ty1) =
case (Id.idFlavour var) of

-- special case for nil
(IdInfo.DataConId con) -> handleNil con a
(IdInfo.DataConWrapId con) -> handleNil con a
otherwise -> (transApp a)

where handleNil con a@(Core.App (Core.Var var) ty1) =
if (con == TysWiredIn.nilDataCon) then

(F.Con F.nil [(trans ty1)])
else
(transApp a)

Figure 2.6: The Core-to-F translator – Lit, Var, and special cases of Apps

32 CHAPTER 2. TRANSLATING BETWEEN HASKELL AND F

trans a@(Core.App _ _) = (transApp a)
trans (Core.Lam arg exp) = (F.Lam (transId arg) (trans exp))
trans (Core.Let binds exp) = (F.Let (transBinds binds)

(trans exp))
trans (Core.Case exp var alts) = (F.Case (trans exp)

(transId var)
(transAlts alts))

trans (Core.Note _ exp) = (trans exp) -- discard Note information
trans (Core.Type ty) = (F.Type (transTy ty))

Figure 2.7: The Core-to-F translator – App, Lam, Let, Case, Note, and Type

doesn’t print out these unique identifiers, so I marked the wrappers by appending a “W”
onto their names.) In the Core code, cons and nil are sometimes written as : and [], and
sometimes written as $w: and $w[] – for our purposes, these two different representations
are equivalent. The result of translating this program into F is shown in Figure 2.11. Note
that the bindings for main and show are missing – the Core-to-F translator removes these,
as their types are not supported by F.

Eventually, it would be desirable to translate the F program returned by the deforestation
algorithm back into Core, so that type-inference-based deforestation could be incorporated
as an optimization pass into GHC. This would be a nontrivial process, as we would need
to find a way of saving and later restoring the information that the Core-to-F translator
discards (see Chapter 5).

2.4 The F-to-Haskell Translator

The output of the list abstraction algorithm is an F program. For benchmarking purposes, it
would be necessary to introduce the output back into GHC, so that the results of compiling
it could be compared with the results of compiling the original program. There are two
possible ways to do this. The first method would be to translate the F AST back into
an equivalent Core AST, which is hard. This method would require preserving and later
restoring the information that the Core-to-F translator discards – how this would be done
is unclear. The second method is to translate the F AST into a Haskell program and feed
it back into GHC, which is easier. I chose the second method, and wrote an F-to-Haskell
translator, which takes an F program and returns a string representing the corresponding
Haskell program.

The translator is implemented by the f2haskell function, and is fairly straightforward.
At the top level, it expects the program to have the form (Let <binds> <body>), and
the resulting Haskell program will have the form:

main = putStr (show <(f2haskell body)>)

<(f2haskell binds)>

2.4. THE F-TO-HASKELL TRANSLATOR 33

transAlts :: [Core.CoreAlt] -> [F.CoreAlt]
transAlts alts = (map transAlt alts)

transAlt :: Core.CoreAlt -> F.CoreAlt
transAlt (altcon, args, exp) =

(case altcon of
Core.DataAlt dc ->
(if (dc == TysWiredIn.nilDataCon) then

(Core.ConPat (Core.nil))
else (if (dc == TysWiredIn.consDataCon) then

(Core.ConPat (Core.cons))
else (if (dc == TysWiredIn.trueDataCon) then

(Core.ConPat (Core.true))
else (if (dc == TysWiredIn.falseDataCon) then

(Core.ConPat (Core.false))
else (Core.ConPat (Core.C (transName

(DataCon.dataConName dc))))))))
Core.LitAlt l -> F.LitPat (transLit l)
Core.DEFAULT -> F.DEFAULT,
(map transId args),
(trans exp))

transName :: Name.Name -> F.Name
transName nm = F.mkSysLocalName

(S# (Unique.u2i (Name.nameUnique nm)))
(OccName.decode
(OccName.occNameString (Name.nameOccName nm)))

transId :: Var.Id -> F.Id
transId v = (F.mkIdVar (transName (Var.idName v))

(transTy (Var.idType v)))

transLit :: Literal.Literal -> F.Literal
transLit l = case l of

Literal.MachChar c -> F.MachChar c
Literal.MachInt i -> F.MachInt i
otherwise -> error ("TransCore: type of " ++

(show l) ++
" not supported")

Figure 2.8: Auxiliary functions for the Core-to-F translator

34 CHAPTER 2. TRANSLATING BETWEEN HASKELL AND F

mymap :: (Bool -> Bool) -> [Bool] -> [Bool]
mymap f l = (case l of

[] -> []
(x:xs) -> (f x):(mymap f xs))

mapmyid :: [Bool]
mapmyid l = (mymap (\ x -> x) l)

main :: IO()
main = (putStr (show (mapmyid [True])))

Figure 2.9: id program in Haskell

The code for f2haskell is shown in Figure 2.12 and Figure 2.13. (The code for the
function convertBinds, used at the top level of the translator, is not shown – all it does is
remove certain unnecessary bindings which are inserted by GHC.)

The only non-trivial part of the translator is printing out variable names. Since GHC
splits each function into a worker and wrapper, where the worker and the wrapper have the
same name but different uniques, there may be more than one variable with the same name
in an F program that was translated from Core. But we can’t print out the name with the
unique appended onto it in every case, since if we do this for Prelude functions, the result
will not be valid Haskell. So when we translate a variable, we have to check whether or not
it represents a Prelude function.

The translator discards any type information – for the programs I have tested, it is not
necessary to include this information, but for some programs it may be necessary for the
translator to include it. If necessary, it would be simple to modify the translator to print
out a type signature for the function being defined before each function definition.

For the Haskell expression in Figure 2.5, the result of the translator (after translating
the expression into F) is:

main = (let ds = (lit:[])

in (case ds of

(x:xs) -> False

[] -> True))

lit = (id (id 1))

(I added the indentation – the translator itself doesn’t perform any.)
GHC assigned the names ds to the case expression, and lit to the literal 1, so the

translator reflects this. Also, the translator replaces certain functions which are inserted by
GHC to convert between types, but which are not available to the user, with the id function,
which explains the definition of lit. (It would be fairly simple to change the translator to
delete these functions instead, but this is not currently done.)

2.4. THE F-TO-HASKELL TRANSLATOR 35

Rec {
mymap :: ((Bool -> Bool) -> [Bool] -> [Bool])
mymap
= \ f :: (Bool -> Bool) l :: [Bool] ->

let {
ds_d1nv :: [Bool]
ds_d1nv
= l

} in
-- by default, GHC assigns the name "wild" to the case expression

case ds_d1nv of wild_B1 {
-- the @s denote that : and [] are being applied to the type Bool

: x xs -> : @ Bool (f x) (mymap f xs); [] -> [] @ Bool
}

mymapW :: ((Bool -> Bool) -> [Bool] -> [Bool])
mymapW

= mymap
mapmyid :: ([Bool] -> [Bool])
mapmyid
= \ l :: [Bool] -> mymap (\ x :: Bool -> x) l

mapmyidW :: ([Bool] -> [Bool])
mapmyidW

= mapmyid
main :: (IO ())
main
= putStr (show (mapmyid ($w: @ Bool True ($w[] @ Bool))))

mainW :: (IO ())
mainW
= main

show :: ([Bool] -> String)
show

= show @ [Bool] $dShow
$dShow :: {Show [Bool] }
$dShow

= PrelShow.$fShow[] @ Bool $dShow
$dShow :: {Show Bool }
$dShow
= PrelShow.$fShowBool

end Rec }

Figure 2.10: id program in Core

36 CHAPTER 2. TRANSLATING BETWEEN HASKELL AND F

let {mymap : (Bool -> Bool) -> [Bool] -> [Bool]
= \f : Bool -> Bool -> \l : [Bool] ->

let ds : [Bool] = l : [Bool];
in case ds : [Bool] of wild

{ Cons x xs ->
Cons {Bool
(f : Bool -> Bool (x : Bool))
(mymap : (Bool -> Bool) -> [Bool] -> [Bool]
(f : Bool -> Bool)
(xs : [Bool])) };

Nil -> Nil {Bool } };
mymapW: (Bool -> Bool) -> [Bool] -> [Bool]
= mymap : (Bool -> Bool) -> [Bool] -> [Bool];
mapmyid : [Bool] -> [Bool]
= \l : [Bool] -> mymap : (Bool -> Bool) -> [Bool] -> [Bool]

(\x : Bool -> x : Bool)
(l : [Bool]);

mapmyidW : [Bool] -> [Bool] = mapmyid : [Bool] -> [Bool]; }
in mapmyidW : [Bool] -> [Bool] (Cons {Bool True (Nil {Bool }) })

Figure 2.11: id program in F

2.4. THE F-TO-HASKELL TRANSLATOR 37

f2haskell (Let binds body) = "main = " ++ (f2haskell’ body) ++
"\n\n" ++ (concat (convertBinds binds))

f2haskell _ = error $ "f2haskell: Let expected"
f2haskell’ (Var v) = var2String v
f2haskell’ (Lit (MachChar c)) = "’" ++ [c] ++ "’"
f2haskell’ (Lit (MachInt i)) = (show i)
f2haskell’ (Con con args) =
(if (con == cons) then

(parens (sep ":" (f2haskell’ (first args’))
(f2haskell’ (second args’)))

else if (con == nil) then "[]"
else if ((con == true) || (con == true’)) then "True"
else if ((con == false) || (con == false’)) then "False"
else

error $ "bad constructor" ++ (pretty con))
where (_, args’) = span isTypeArg args

f2haskell’ (App fun (Type _)) = (f2haskell’ fun)
f2haskell’ (App fun arg) = (parens (sep " " (f2haskell’ fun)

(f2haskell’ arg)))
f2haskell’ (Lam var body) =

(case (idType var) of
(TyConApp Kind _) -> (f2haskell’ body)
_ -> (parens ("\\ " ++ (sep " -> " (var2String var)

(f2haskell’ body)))))
f2haskell’ (Let binds expr) =
(parens

(case flat of
[] -> (f2haskell’ expr)
_ -> (sep "in "

("let " ++
(curlies (concat ((map (bind2haskell True)

(allbutlast flat))
++ [(bind2haskell False (last flat))]))))

(f2haskell’ expr))))
where flat = flattenBinds binds

f2haskell’ (Case expr _ alts) =
(parens ("case " ++ (f2haskell’ expr) ++ " of\n"

++ (concat ((map (alt2haskell True) (allbutlast alts))
++ [(alt2haskell False (last alts))]))))

Figure 2.12: The F-to-Haskell translator

38 CHAPTER 2. TRANSLATING BETWEEN HASKELL AND F

bind2haskell :: Bool -> (Var, Expr) -> String
bind2haskell semi (var, expr) = ((sep " = "

(var2String var)
(f2haskell’ expr)) ++

(if semi then
";\n"
else
"\n\n"))

alt2haskell :: Bool -> (Pat, [Var], Expr) -> String
alt2haskell newline (pat, vars, expr) =

((sep " -> "
(pat2string pat vars)
(f2haskell’ expr)) ++ (if newline then

"\n"
else
""))

pat2string :: Pat -> [Var] -> String
pat2string (ConPat con) vars = (f2haskell’ (Con con (map Var vars)))
pat2string (LitPat lit) _ = (f2haskell’ (Lit lit))
pat2string DEFAULT _ = "_"

var2String :: Var -> String
var2String var = (case (preludeLookup var) of
-- for Prelude functions, don’t print the unique

Just str -> str
Nothing -> (pretty var))

parens :: String -> String
parens s = "(" ++ s ++ ")"

curlies :: String -> String
curlies s = " {" ++ s ++ " }"

sep :: String -> String -> String -> String
sep separator firstString secondString =

firstString ++ separator ++ secondString

Figure 2.13: Auxiliary functions for the F-to-Haskell translator

Chapter 3

Tools for F

Originally, the only way to verify the results of the type inference algorithm was to read
through the F programs it produced. This was inadequate for thorough testing, so I devel-
oped a typechecker and interpreter for F. These tools can be used to compare the input F
program (produced by the Core-to-F translator) with the output F program produced by
the list abstraction algorithm, using the typechecker to verify that both are well-typed, and
using the interpreter to verify that both programs evaluate to the same value.

Both the typechecker and the interpreter return results in the IO monad – that is, of type
IO (Type) and IO (Result), respectively. Monads are a feature of Haskell that simulate
imperative-style programming features such as input/output – in particular, the only way for
a program to display debugging or other information while it runs is to embed the commands
that display this information within an expression of type IO (<ty>), for some type <ty>.
Such expressions usually have the form:

do

name1 <- <expr1>

name2 <- <expr2>

[...]

-- either:

exprn

-- or:

return(val)

The lines namei <- expri associate the namei’s with the values of the expri’s, all of
which have type IO (<ty>), for some type <ty>. The final line of the do expression is
either exprn, an expression of type IO (<ty>), or return(val), where val is an expression
of type <ty>, rather than IO (<ty>).

3.1 The F Typechecker

Typechecking F is fairly straightforward, except that a special rule (discussed below) is
necessary for applications of build.

39

40 CHAPTER 3. TOOLS FOR F

The code for the typechecker is shown in Figure 3.1. The case for typechecking a variable
works by retrieving the idType field stored within the variable. (Most typecheckers work
by passing around a type environment, which maps each variable currently in scope onto
its type, but since variables in F store their types within them, the type environment is
not necessary here.) The cases for constructor applications and function applications handle
type arguments using the applyTys and applyTy functions (defined elsewhere), which apply
a polymorphic type to a list of arguments or a single argument, respectively. Also, the case
for function applications includes a special case that checks whether the operator build and
invokes the function typecheckBuild (described below) if so.

The case for Case expressions is somewhat more lenient than it should be – for an expres-
sion (Case expr var alts), it typechecks expr and typechecks the right-hand sides of the
elements of alts, but does not typecheck the left-hand sides of the alts (the case patterns).
The reason why is that in the syntax of F, constructor patterns in a Case expression do not
include the type arguments for the constructor. Typechecking a Case constructor pattern
could be accomplished by reconstructing the proper type arguments for the constructor from
the types of the variables it is applied to in the pattern, and then typechecking the construc-
tor application corresponding to the pattern. This still would not work for all constructors
– for example, Nil is polymorphic but has no term arguments. So we would have to define a
special case to check for such constructors and assume that their types are the same as the
type of the Case scrutinee.

The rest of the cases of the typechecker are straightforward.

The auxiliary functions for the typechecker are shown in Figure 3.2. The only one worth
commenting on is typecheckBuild. The rule for typechecking (build ty buildArg) should
check that buildArg has the type (∀β.(ty → β → β) → (β → β)). In reality, it checks
something more restrictive than this. The typecheckBuild function uses the == operator on
Types, which is defined by declaring that the Type datatype derives the Eq class. This means
that when the program compares two Types for equality, it does so by checking whether the
types are equal component-wise. Thus, the equality test for types is too strict – for example,
((ForAllTy a [a]) == (ForAllTy b [b])) evaluates to False if a and b are different type
variables, even though the two types are functionally equivalent. So, the build rule might
appear to be somewhat sketchy: the types first (the type of the first argument of the
function that is the first argument to the argument of build) and someTy (the type to which
build is applied) could be any types. (The other types being tested for equality should all
simply be type variables, in which case the equality test works correctly.) But in fact, the
rule should be exactly right as long as the typechecker is only applied to F programs that
were translated from Haskell. Because of the restrictions of Haskell, it should be the case
that build is never applied to a polymorphic type – hence, the equality test will hold.

To illustrate how the typechecker works, we will execute it on an example program.
Consider the Haskell program (which applies the identity function to a constant list by folding
(:) and [] over it) shown in Figure 3.3, and its equivalent F program (pretty-printed in
a Haskell-like syntax) after applying the list abstraction algorithm, shown in Figure 3.4.
The F program is an excellent example of a program we might wish to typecheck, in order
to verify that the list-abstraction transformation preserved the program’s type-correctness.

The program consists of a function application, so we first typecheck the function being

3.1. THE F TYPECHECKER 41

typecheck :: Expr -> IO (Type)
typecheck (Var id) = return(idType id)
typecheck (Lit (MachChar _)) = return(charTy)
typecheck (Lit (MachInt _)) = return(intTy)
typecheck (Con con args) = do

let (tyargs, termargs) = span isTypeArg args
let appliedTy = applyTys (dataConType con)

(map (\ (Type ty) -> ty) tyargs)
argTys <- typecheckList termargs
return(foldl typeApply appliedTy argTys)

typecheck (App fun (Type tyArg)) = do
funTy <- typecheck fun
return (case funTy of

f@(ForAllTy _ _) -> (applyTy f tyArg)
_ -> error $ "typecheck: app: attempt to"

++ "apply an expression of non-forall-type to a type")
-- Special case for build
typecheck a@(App (App (Var funId) (Type someTy)) buildArg) = do
(if (funId == buildId) then

(typecheckBuild a)
else
(typecheckApp a))

typecheck a@(App fun arg) = (typecheckApp a)
typecheck (Lam arg body) = do

argTy <- typecheck (Var arg)
bodyTy <- (typecheck body)
return(case argTy of

-- Eventually, this case should check that the type variable (<arg>) is not free
-- in the surrounding type environment, but this is a technicality.

(TyConApp Kind _) -> (ForAllTy arg bodyTy)
_ -> (FunTy argTy bodyTy))

typecheck (Let binds body) = do
bindTys <- (typecheckBind binds)
typecheck body

typecheck (Case expr var alts) = do
-- typecheck expr

exprTy <- typecheck expr
-- typecheck alts

(lhsTys, rhsTys) <- typecheckAlts alts
-- make sure all lhsTys are the same and all rhsTys are the same

return (if (not ((allTheSame lhsTys) && (allTheSame rhsTys))) then
error "typecheck: alternatives have different types in case"

else
(head rhsTys))

typecheck (Type _) = error $ "typecheck: this shouldn’t happen\n"
++ "typecheck: attempt to typecheck a type"

Figure 3.1: The F typechecker

42 CHAPTER 3. TOOLS FOR F

typecheckBind :: Bind -> IO([Type])
typecheckBind (NonRec var expr) = do

varTy <- typecheck (Var var)
exprTy <- typecheck expr
return(if (varTy == exprTy) then [exprTy]

else error "typecheckBind: lhs and rhs of bind don’t match")
typecheckBind (Rec binds) = do

tys <- mapM typecheckBind (map (\ (var, exp) -> (NonRec var exp)) binds)
return(concat tys)

typecheckAlts :: [Alt] -> IO([Type], [Type])
typecheckAlts alts = (mapAndUnzipM typecheckAlt alts)
typecheckAlt :: Alt -> IO(Type, Type)
typecheckAlt (pat, vars, expr) = do

exprTy <- (typecheck expr)
(case pat of

-- Should really typecheck the pattern...
(ConPat con) -> return (exprTy, exprTy)
(LitPat lit) -> do

litTy <- typecheck (Lit lit)
return(litTy, exprTy)

DEFAULT -> return(exprTy, exprTy))
typecheckApp (App fun arg) = do

funTy <- typecheck fun
argTy <- typecheck arg
return(typeApply funTy argTy)

typeApply f@(FunTy formalTy resTy) actualTy =
if (formalTy /= actualTy) then

error $ "typecheck: typeApply: type mismatch applying "
++ (pretty f) ++ " to " ++ (pretty actualTy)

else resTy
typeApply funty argty =
error $ "typecheck: typeApply: attempt to apply non-function type,"

++ " namely " ++ (pretty funty) ++ " and " ++ (pretty argty)
typecheckBuild (App (App (Var buildId) (Type someTy)) buildArg) = do
argTy <- typecheck buildArg
(case argTy of

(ForAllTy tyVar (FunTy (FunTy first (FunTy second third))
(FunTy fourth fifth))) ->

(if ((first == someTy) && (all ((==) (TyVarTy tyVar))
[second, third, fourth, fifth])) then

return(TyConApp List [someTy])
else error $ "typecheck: argument to build has wrong type, namely "

++ (pretty argTy))
_ -> error $ "typecheck: argument to build has wrong type")

typecheckList :: [Expr] -> IO([Type])
typecheckList exps = (mapM typecheck exps)

Figure 3.2: Auxiliary functions for the F typechecker

3.1. THE F TYPECHECKER 43

main = putStr (show (foldr (\ a r -> (a:r)) [True]))

Figure 3.3: A simple list-manipulating Haskell program

foldr : forall a. forall b. (a -> b -> b) -> b -> [a] -> b
Bool
[Bool]
(\a : Bool -> \r : [Bool] ->
Cons Bool (a : Bool) (r : [Bool]))

(Nil Bool)
(build : forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]

Bool
-- the * represents Kind, the type of a type

(\resultTy : * -> \c : Bool -> resultTy -> resultTy -> \n : resultTy ->
c : Bool -> resultTy -> resultTy True (n : resultTy)))

Figure 3.4: Figure 3.3, after list abstraction

applied:

foldr : forall a. forall b. (a -> b -> b) -> b -> [a] -> b

Bool

[Bool]

(\a : Bool -> \r : [Bool] ->

Cons Bool (a : Bool) (r : [Bool]))

(Nil Bool)

This function is itself a function application, so we keep going until we get to foldr, which
is a variable, and find that it has type ∀ a. ∀ b. (a → b → b) → b → [a] → b.
Applying this type to the type arguments for foldr, we get the type ((Bool → [Bool] →
[Bool]) → [Bool] → [Bool] → [Bool]). The two term arguments have types (Bool

→ [Bool] → [Bool]) and [Bool], so the type of the function in the application which
comprises the main program is ([Bool] -> [Bool]).

Now we check the type of the argument, which is:

(build : forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]

Bool

-- the * represents Kind, the type of a type

(\resultTy : * ->

\c : Bool -> resultTy -> resultTy ->

\n : resultTy ->

c : Bool -> resultTy -> resultTy True (n : resultTy)))

Invoking the special rule for build, we first typecheck the term argument to build, which
is:

(\resultTy : * -> \c : Bool -> resultTy -> resultTy -> \n : resultTy ->

c : Bool -> resultTy -> resultTy True (n : resultTy))

44 CHAPTER 3. TOOLS FOR F

Using the rules for type abstractions, term abstractions, and function applications, we de-
termine that this expression has type (∀ resultTy . (Bool → resultTy → resultTy)

→ resultTy → resultTy). This is the right form for the term argument to build, and
in addition, Bool is equal to the type argument to build (Bool) and the resultTys are all
equal to each other, so the application of build has type [Bool].

Now that we know the type of the function ([Bool] -> [Bool]), and the type of the
argument ([Bool]), in the function application which comprises the program, the rule for
function applications determines that the type of the program is [Bool], which is what we
would expect.

3.2 The F Interpreter

The F interpreter is somewhat less straightforward than the typechecker, mainly due to the
presence of Prelude functions. For the typechecker, Prelude functions are easy to deal with,
since they are represented by variable names which already have their types embedded within
them. The interpreter, on the other hand, actually has to know what the functions are.

The interpreter is accessed by calling the function eval, which takes an F expression and
returns an object of type Result, representing the value of the expression:

eval :: Expr -> IO (Result)

The definition of the Result datatype is shown in Figure 3.5.

data Result =
IntRes Integer

| CharRes Char
| ListRes [Result]
| BoolRes Bool
| Closure (Var, CoreExpr, Env)
| CurriedPrim (Primop, Int, [Result])
| ExprRes (CoreExpr, Env)

type Primop = (Var, [Result] -> Result)

Figure 3.5: The Result datatype

A Closure of v, expr, and env represents the expression (\ v -> expr), if it was defined
in env. A CurriedPrim represents a Haskell Prelude function, and is represented by a triple
of a Primop, an integer denoting the number of arguments the function takes, and a possibly
empty list representing any accumulated arguments (for example, evaluating (App (Var +)

(Lit (MachInt 1))) would result in (CurriedPrim (plus, 2, [(IntRes 1)]), where plus
is the Primop representing the + function). A Primop is a pair of a Prelude function’s name,
and a function that takes a list of Results, checks that they have the proper type, and if
so, returns a Result representing the value of applying the appropriate Prelude function to
the arguments’ values. An ExprRes consists of an arbitrary F expression, along with the

3.2. THE F INTERPRETER 45

environment where it was defined. The type ExprRes is used within the interpreter to model
lazy evaluation for Let bindings.

The interpreter relies on two constant environments, funenv and specialenv, as well
as the environment that it takes as an argument representing the variables in scope for the
current expression. funenv maps each Prelude function’s name onto either a CurriedPrim

representing the function (with [] as the list of accumulated arguments), or for any higher-
order functions, a Closure giving the function’s definition in F.1 specialenv contains various
functions which GHC inserts into programs and are used to convert between types, such as
fromInt (which has type (Int -> Integer) – Int and Integer both represent integers
in Haskell, but F has only one integer type). If a variable is found in specialenv, it is
interpreted as the identity function.

The interpreter assumes that the input expression has already been typechecked, and
so it can (and does) ignore all type applications and type abstractions, treating (\ ty ->
expr) as expr (if ty is a type variable) and (fun ty) as fun (if ty is a type).

The function eval calls the function eval’, which has the following type. The envi-
ronment argument represents the variables which are currently in scope, mapping variable
names onto Results.

eval’ :: Env -> Expr -> IO(Result)

The simpler cases in eval’ are shown in Figure 3.6. For the case for Con, only one
clause is shown; the rest of it is similar, with special cases for each constructor. The case for
Let causes the bindings to be evaluated lazily; this was the simplest strategy, because the
bindings may be mutually recursive.2

The case for Var is shown in Figure 3.7. First, the variable is looked up in the environment
of variables currently in scope. If it is found, the result of the lookup is returned, unless
it is an ExprRes, in which case the result of evaluating its expression is returned. If it is
not found, it is subsequently looked up in the two environments of Prelude functions, and
the result of the lookup is returned if it is found. If it still hasn’t been found, an ”unbound
variable” error is signalled.

The case for App is shown in Figure 3.8. The second case checks whether the function
being applied is (build ty), for some ty. If so, it is evaluated by applying the argument to
(Lam x (Lam xs (Con cons [(Var x), (Var xs)]))) and (Con nil []). This is hard-
wired into the interpreter, although build could just as easily be included in the environment
of primitive operators. If the function is not build, the interpreter checks whether the func-
tion is a Closure or a CurriedPrim. If the function is a Closure, the result of evaluating the
function body in the Closure’s environment, extended with the function’s formal parameter
bound to the result of evaluating the argument, is returned. (This implements lexical scop-
ing, as is used in Haskell.) If it is a CurriedPrim, the interpreter checks whether the primop

1Not all Prelude functions have been added as of yet, but it is easy, if tedious, to add more.
2Since Haskell is a lazy language, normally we would be able to handle mutually recursive bindings

without any extra work. However, since the interpreter returns results in the IO monad, the only way to
model laziness in a less clumsy way is to use the fixIO operator, which is defined in GHC’s IOExts library.
We tried to define the Let case for the interpreter in terms of fixIO, but were never able to do so without
the program going into an infinite loop.

46 CHAPTER 3. TOOLS FOR F

eval’ env (Lit (MachChar c)) = return(CharRes c)
eval’ env (Lit (MachInt i)) = return(IntRes i)
eval’ env (Con con args) = do

newargs <- (mapM (eval’ env)
(filter (\ x -> (not (isTypeArg x))) args))

let len = length newargs
(if (con == cons) then
(if (len == 2) then

return(listresCons (head newargs) (tail newargs))
else
error $ "eval: cons applied to " ++ (show len) ++

" args, expects 2 args\n" ++ "offending expr = " ++
(pretty c) ++ " whose args are " ++

(showResult (ListRes newargs)))
else -- and so on...)

eval’ env l@(Lam arg body) = do
-- check if it’s a type lambda; if so, just evaluate the body
return(case (varDetails arg) of

TyVar -> (eval’ env body)
_ -> return(Closure(arg, body, env)))

eval’ env (Let binds body) = do
newenv <- (insertBinds (flattenBinds binds) env)
(eval’ newenv body)

insertBinds binds env = do
return (tableExtend vars (map ExprRes exprs) env)
where (vars, exprs) = unzip binds

Figure 3.6: The F evaluator – Lit, Con, Lam, and Let

eval’ env (Var id) = do
(case (tableLookup id env) of
(Just (ExprRes(expr, itsenv))) -> (eval’ itsenv expr)
(Just val) -> return val
Nothing -> (case (tableLookup id funenv) of

(Just res) -> return res
Nothing -> (case (tableLookupString id specialenv) of

(Just res) -> return res
Nothing -> error $ "eval: unbound variable: "

++ (pretty (idName id)))))

Figure 3.7: The F evaluator: Var

3.2. THE F INTERPRETER 47

eval’ env (App fun (Type _)) = eval’ env fun
eval’ env a@(App (App (Var funId) (Type _)) buildExpr) =

if (funId == buildId) then
(eval’ env (App (App buildExpr

(Lam x (Lam xs
(Con cons [(Var x),(Var xs)]))))

(Con nil [])))
else (evalFun env a)

eval’ env a@(App _ _) = evalFun env a

evalFun env (App fun (Type _)) = (eval’ env fun)
evalFun env (App fun arg) = do
res’ <- (eval’ env fun)
case res’ of

(Closure (l@(Lam v b), returnedEnv)) ->
do
newarg <- eval’ env arg
(eval’ (tableInsert v newarg returnedEnv) b)

(CurriedPrim (primop, numargs, args)) ->
if (((length args) + 1) == numargs) then

do
arg’ <- eval’ env arg
return(applyPrimop primop (args ++ [arg’]))

else
do
arg’ <- eval’ env arg
return(CurriedPrim(primop, numargs, args ++ [arg’]))

exp -> error $ "eval: attempt to apply " ++ (showResult exp)

Figure 3.8: The F evaluator – App

48 CHAPTER 3. TOOLS FOR F

application is saturated; if it is, it returns the result of applying the primop to the list of
accumulated arguments with the current argument appended onto it, if it is not, it returns
the same CurriedPrim with the current argument appended onto the list of accumulated
arguments. If the function is another type of Result, an error is signalled.

The case for evaluating Case is shown in Figure 3.9. The findMatch function determines
which alternative (con, vars, result) matches the scrutinee, and, like other parts of the
program, relies on special cases for each possible constructor. If the scrutinee is a nonempty
list, the interpreter extends the environment by mapping the members of vars onto the list’s
head and tail, and returns the result of evaluating result in that environment.

To see the interpreter in action, consider the program shown in Figure 3.4. The program
consists of a function application, so we first evaluate the function, which gives us:

foldr

Bool

Bool

(\a : Bool -> \r : [Bool] ->

Cons Bool (a : Bool) (r : [Bool]))

(Nil Bool)

This is itself an application, so we keep going similarly until we get to foldr, which
is a variable. Looking up foldr in the environment of primitives gives us a closure whose
abstraction is:3

(\ f z l -> (case l of

(Cons x xs) -> (f x (foldr f z xs))

Nil -> z))

When we apply this function to the first two arguments, we end up with a closure of the
abstraction:

(\ l -> (case l of

(Cons x xs) -> (f x (foldr f z xs))

Nil -> z))

and an environment (call it foldr env) where f and z are bound to (\ a -> \ -> r ->
Cons a r) and Nil, respectively. This is the value of the operator in the application which
comprises the main program.

Next we evaluate the operand in the top-level application, which is:

(build

Bool

(\resultTy -> \c -> \n ->

c True n))

3Technically, foldr should have type arguments, but since the interpreter ignores type arguments, its
definitions of Prelude functions do not include them.

3.2. THE F INTERPRETER 49

eval’ env (Case c var alts) = do
caseexp <- eval’ env c
let (con, vars, result) = findMatch caseexp alts
(eval’

(tableInsert var caseexp
(case caseexp of

(ListRes []) -> env
(ListRes (x:xs)) ->
(case con of
(ConPat c) -> (if (c == cons) then

(tableExtend vars [x, (ListRes xs)] env)
else
env)

_ -> error $
"eval’: this can’t happen: case pattern
doesn’t match scrutinee")))

-- this case handles an arbitrary constructor of one argument;
-- more cases would have to be added here if other constructors
-- were added to the language

_ -> (tableExtend vars [caseexp] env)) result)
findMatch result alts = (case result of

(ListRes l) -> (findMatchList l alts)
(IntRes i) -> (findMatchLit result alts)
(CharRes c) -> (findMatchLit result alts)
(BoolRes b) -> (findMatchCon

(if b then true else false)
alts)

(CurriedPrim (primop, _, args)) ->
(findMatch
(applyPrimop primop args)
alts))

findMatchList l alts = (case l of
[] -> (findMatchCon nil alts)
(x:xs) -> (findMatchCon cons alts))

findMatchCon con alts =
(case (filter (\ x -> (case x of

(DEFAULT, _, _) -> True
((ConPat c), _, _) -> (conEquals c con))) alts) of

[] -> error "findMatchCon: nonexhaustive patterns in case’’
(alt:_) -> alt)

findMatchLit litRes alts =
(case (filter (\ thing -> case thing of

((LitPat lit), _, _) ->
(litEquals lit litRes)

(DEFAULT, _, _) -> True
((ConPat con), _, _) ->

((getUnique con)
== (getUnique isharp))) alts) of

[] -> error "findMatchLit: nonexhaustive patterns in case"

(alt:_) -> alt)

Figure 3.9: The F evaluator – Case

50 CHAPTER 3. TOOLS FOR F

Using the special case for build, we apply the term argument to (\ x xs -> (Cons x xs))

and Nil, so we evaluate

(c True n)

in an environment (call it build arg env) where c and n are bound to (\ x xs -> (Cons

x xs)) and Nil, respectively. First we evaluate (c True), giving us a closure of the ab-
straction:

(\ xs -> (Cons x xs))

and an environment (call it c env) where x is bound to True. Then we evaluate (Cons x

xs) in c env extended with a binding between xs and Nil, which gives us (Cons True Nil),
or [True]. We have now evaluated the operand in the top-level application.

Finally, we evaluate the body of the function in the top-level application, which is:

(case l of

(Cons x xs) -> (f x (foldr f z xs))

Nil -> z)

in foldr env, extended with a binding between l and [True] (call this extended environment
foldr env 1). First we evaluate l, giving us [True]. The findMatch function tells us that
[True] matches the case beginning with (Cons x xs), so we evaluate (f x (foldr f z

xs)) in foldr env 1, extended with bindings between x and True, and xs and Nil. In a
similar fashion as before, this gives us (Cons True Nil), or [True]. So the entire program
evaluates to [True], as expected.

Chapter 4

Shortcut Deforestation

Chitil’s prototype implementation of type-inference-based deforestation only included the
list abstraction algorithm, which initially produced output that contained the abstracted
list constructors, c and n, as free variables. The shortcut rule itself was not implemented.
After implementing the postprocessing necessary to turn an expression produced by the
list abstraction algorithm into a meaningful expression (i.e., one without free variables), I
implemented the shortcut rule.

4.1 The List Abstraction Algorithm

It is first necessary to understand the list abstraction algorithm itself. First, it replaces every
list constructor in the input expression with a new variable, and every type of every list-
valued expression with a new type variable. Then, it assigns a special type, called build, to
the entire expression. By deriving a principal typing for the expression, it determines which
type variables within it are equivalent to build; the list constructors that have these types
are precisely the ones that can be abstracted. Finally, it replaces any constructors that were
not abstracted over with their original values. The result is an expression that has had some
of its list constructors replaced with variables, c (representing cons) and n (representing nil).

For example, consider the following Haskell program, which maps the not function onto
a list of booleans and then ands it together:

main = putStr (show (foldr (\ a b -> a && b) True

(foldr (\a r -> (not a):r)

[]

[True])))

The list abstraction algorithm should be applied to the inner foldr application, since it is
immediately consumed by another foldr. Here is the output of the original list abstraction
algorithm, applied to the translated version of that foldr application:

51

52 CHAPTER 4. SHORTCUT DEFORESTATION

let { }
in

foldr : forall a. forall b. (a -> b -> b) -> b -> [a] -> b

Bool

build101

(\a : Bool -> \r : build101 ->

c4 : Bool -> build101 -> build101 (not : Bool -> Bool (a : Bool))

(r : build101))

(n3 : build101)

(Cons-1 : forall a-10. a-10 -> [a-10] -> [a-10]

Bool

True-5

(Nil-2 : forall a-10. [a-10] Bool))

(The Core-to-F translator expects the top-level program – a list of Core bindings, <binds>
– to include a binding for a function called main, whose definition is of the form (putStr

(show <exp>. This is an expectation that GHC makes as well. The resulting F expression
is of the form (let <binds> in <exp>).)

Notice that c4 and n3, the abstracted list constructors, are free variables. The type
variable build101, representing the result type of the abstract list, is also a free variable.

4.2 Postprocessing Steps

In order for an expression resulting from the list abstraction algorithm to make sense, it has
to be transformed into a λ of c and n, and then have a build wrapped around it. I added
code to do this postprocessing.

I wrote a function called searchForFoldrs that takes an F expression and searches for
expressions of the form (foldr ty1 ty2 f start l). When it finds one, it first calls itself
recursively on each subexpression, in order to handle any foldr applications within the
subexpressions. This results in new subexpressions f’, start’, and l’. Then, it applies the
list abstraction algorithm to l’, resulting in an abstract list, abstractList. It calls another
function, insertBuild, that turns abstractList into buildExpr, which has the form (\ c

n → abstractList). Finally, it returns the expression:

(foldr ty1 ty2 f’ start’ buildExpr)

The code for the relevant case of searchForFoldrs is shown in Figure 4.1. (The other
cases merely apply searchForFoldrs to subexpressions.)

The function insertBuild takes three Uniques1 – nUnique, cUnique, and resultTyU-

nique – a type, elementTy, and an F expression, expr. It returns the expression:

1A Unique is the type of unique identifiers for variables, and is represented as an integer. Obviously,
these Uniques must actually be unique – that is, not used anywhere else in the program.

4.2. POSTPROCESSING STEPS 53

searchForFoldrs us a@(App (App (App (App (App (Var id) ty1@(Type t1))
ty2@(Type t2)) f) start) arg) =

if (nameEquals id "foldr") then
do
newarg <- (searchForFoldrs newus arg) -- handle subexpressions
newf <- (searchForFoldrs us1 f)
newstart <- (searchForFoldrs us2 start)
case newarg of

(Var _) -> return a
_ -> do

-- buildListBuild is Chitil’s list abstraction algorithm
maybeBuildExpr <- (buildListBuild us’ emptyUFM newarg)
(case maybeBuildExpr of

Just buildExpr ->
return(App

(App (App (App (App (Var id) ty1) ty2) f) start)
-- t1 is the element type
(insertBuild nUnique cUnique resultTyUnique t1 buildExpr))

Nothing -> error ("Type inference failed on expression "
++ (pretty newarg)))

else
searchForFoldrsInApp us a

where
-- <us> is a UniqSupply -- a data structure that can generate new
-- unique names. splitUniqSupply creates two UniqSupplies from a
-- single UniqSupply.

(us’, newus) = (splitUniqSupply us)
(us1, us2) = (splitUniqSupply us’)
[nUnique, cUnique, resultTyUnique] = (uniqsFromSupply 3 us2)

Figure 4.1: searchForFoldrs

54 CHAPTER 4. SHORTCUT DEFORESTATION

(build elementTy

(\ resultTy<resultTyUnique>

c<cUnique>

n<nUnique> -> renamedExpr))

where renamedExpr is expr with c<cUnique>, n<nUnique>, and resultTy<resultTyU-

nique> substituted for c4, n3, and build101, respectively. This process of unique renaming
is necessary because the list abstraction algorithm always uses the same variables, c4 and n3,
to represent the abstracted cons and nil, and the same type variable, build101, to represent
the result type of an abstracted list expression.

I have finished describing what is necessary to get the result of the list abstraction
algorithm into the right form for shortcut deforestation. The code for the example from
above, just before shortcut deforestation is performed, is shown in Figure 4.2.

let { }
in
foldr : forall a. forall b. (a -> b -> b) -> b -> [a] -> b
Bool
Bool
(\a : Bool -> \b : Bool -> && : Bool -> Bool -> Bool (a : Bool)

(b : Bool))
True-5
(build666 : forall a-10.

(forall b-11. (a-10 -> b-11 -> b-11) -> b-11 -> b-11) -> [a-10]
Bool
(\resultTy3220 : * ->

\c1610 : Bool -> resultTy3220 -> resultTy3220 ->
\n805 : resultTy3220 -> let { } in

foldr : forall a. forall b. (a -> b -> b) -> b -> [a] -> b
Bool
resultTy3220
(\a : Bool -> \r : resultTy3220 ->

c1610 : Bool -> resultTy3220 -> resultTy3220
(not : Bool -> Bool (a : Bool))
(r : resultTy3220))

(n805 : resultTy3220)
(build666 : forall a-10.

(forall b-11. (a-10 -> b-11 -> b-11) -> b-11 -> b-11) -> [a-10]
Bool
(\resultTy6452 : * ->
\c3226 : Bool -> resultTy6452 -> resultTy6452 ->
\n1613 : resultTy6452 -> let { } in

c3226 : Bool -> resultTy6452 -> resultTy6452
True-5
(n1613 : resultTy6452)))))

Figure 4.2: Sample result of searchForFoldrs

4.3. APPLYING THE SHORTCUT RULE 55

4.3 Applying the Shortcut Rule

The shortcut rule is implemented by a function called shortcut. It searches for instances
where foldr is applied to an application of build, of the form (foldr ty1 ty2 f start

(build buildTy abstractList)). Then it applies shortcut to f, start, and abstract-

List, with results newf, newstart, and newlist, respectively. Finally, if newf has type
α → β → β, it returns the expression (newlist α newf newstart). The code for shortcut
is shown in Figure 4.3.

shortcut :: CoreExpr -> IO (CoreExpr)
-- foldr e_cons e_nil (build (\ c n -> <exp>))
-- => ((\ c n -> <expr>) resultTy e_cons e_nil)
-- where resultTy = type of e_nil
shortcut a@(App (App (App (App (App (Var id) ty1) ty2) f) start)

(App (App (Var argId) buildTy) abstractList)) =
(if ((nameEquals id "foldr") && (argId == buildId)) then

do
newf <- (shortcut f)
newstart <- (shortcut start)
newlist <- (shortcut abstractList)
resultTy <- typecheck start
return(App (App (App newlist (Type resultTy)) newf) newstart)

else
(mapExprExprM shortcut a))

shortcut expr =
(mapExprExprM shortcut expr)

Figure 4.3: Code for shortcut

For the example above, the result of applying the shortcut rule (and β-reducing type
applications afterwards) is shown in Figure 4.4.

56 CHAPTER 4. SHORTCUT DEFORESTATION

let { }
in \c1610 : Bool -> Bool -> Bool ->

\n805 : Bool ->
let { }

in \c3226 : Bool -> Bool -> Bool ->
\n1613 : Bool -> let { }
in c3226 : Bool -> Bool -> Bool True-5 (n1613 : Bool)

(\a : Bool -> \r : Bool ->
c1610 : Bool -> Bool -> Bool (not : Bool -> Bool (a : Bool))

(r : Bool))
(n805 : Bool)

(\a : Bool -> \b : Bool ->
&& : Bool -> Bool -> Bool (a : Bool)

(b : Bool))
True-5

-- This beta-reduces to:
-- && (not True) (True)

Figure 4.4: Sample result of the shortcut rule

Chapter 5

Conclusions and Future Work

My work has advanced the type inference algorithm to the point where, with some minor
improvements, it can be run on Haskell benchmarks and its performance can be compared
to that of other deforestation algorithms. Unlike before, it performs the entire process of
deforestation, and it can take the text of a Haskell program and output the the text of a
Haskell program, as opposed to before, when it took an F AST (abstract syntax tree) and
returned an F AST.

5.1 Working Examples

I have tested the implementation of type-inference-based deforestation on a number of simple
Haskell programs. These programs share several properties, which reflect limitations of the
current implementation:

1. The only datatypes they use are List, Bool, Char, and Int.

2. The programs that manipulate integers contain explicit type declarations, in order to
avoid introducing type classes (which aren’t handled by the type inference algorithm.)

3. They only use a limited range of Prelude functions (those which have been hardcoded
into the interpreter).

4. All functions which are defined in terms of foldr have been cloned by hand.

5. They all consist of simple list-manipulating functions, which are defined in terms of
foldr.

The first limitation would have to be addressed by extending the syntax of F to include
more type constructors and data constructors. It would be fairly simple to extend the range
of basic types to those found in Core (i.e., adding strings, floats, tuples, and so forth), but
adding user-defined datatypes would require some thought. Some minor changes to the code
for the type inference algorithm itself would be necessary, for example, the function that
determines the type of an expression would need to be extended with more cases for the new
types. Changes to the Core-to-F translator, specifically the part of it that translates types,

57

58 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

would also be necessary, in order to detect specific type constructors in Core for the new
types and translate them into the right F type constructors. Finally, the F typechecker and
interpreter would have to be extended to handle the new types. To summarize, it would be
desirable to modify all the code to handle data constructors in a more general way than it
currently does.

Removing the second limitation would only require modifying the Core-to-F translator
to detect type class types and translate them into something simpler. For example, if you
define a function that operates on integers and don’t give an explicit type for it, GHC will
infer a type for it that is defined in terms of a type class like (Num a). The translator could
check for such types and translate them into one of the types that F supports – Int, for
example.

The third limitation could be addressed simply by adding more Prelude functions into
the F interpreter. Of course, it is already possible to run type-inference-based deforestation
on programs which use Prelude functions which are not yet defined in the interpreter – it
just isn’t possible to test the results using the interpreter.

The other two limitations are addressed below.

5.2 Future Work

Here are some future directions in which my work could be taken:

5.2.1 Type-Based Cloning

Along with the type-inference-based deforestation algorithm, Chitil described a type-based
method for cloning recursive and non-recursive function definitions, known as the work-
er/wrapper scheme [Chi00]. For the type inference algorithm to run on ordinary programs,
it will be necessary to implement the worker/wrapper scheme – otherwise, cloning must be
done by hand.

For example, the following program, which computes the sum of squares of the list
[10..1]:

main = putStr (show (sum (map (\x -> (x * x)) [10..1])))

has to be manually transformed into the following form in order for the type inference
algorithm to work:

5.2. FUTURE WORK 59

main = putStr (show (foldr (\ a b -> a + b) 0

(foldr (\a r -> (a*a) : r)

[]

(let mydown :: Int -> [Int]

mydown x =

(if (x == 0) then

[]

else

(x : (mydown (x - 1))))

in

(mydown 10)))))

As is clear from this example, this process is extremely tedious and makes it impractical to
test the current implementation on any programs longer than a few lines.

I believe that automatic cloning is the only major addition that would be necessary in
order for the current implementation to deforest any programs which manipulate lists in a
uniform way.

5.2.2 Beyond Lists

Chitil’s description of the deforestation algorithm only handles lists, but the algorithm could
be extended to datatypes besides lists – i.e., trees. Lists are the simplest and most common-
ly used data structure in functional programs, but other datatypes could be amenable to
deforestation as well. For example, if deforestation were extended to eliminate the datatype
of abstract syntax trees, a compiler that does multiple optimization passes could be auto-
matically fused into a single pass. This would require modifying the implementation so that
it can generalize the notion of foldr to arbitrary datatypes (the theory behind this idea is
described in [MFP91]).

5.2.3 Benchmarking

If the above changes are made, it would then be possible to test type-inference-based defor-
estation on a wide range of benchmarks, such as those in the nofib suite for Haskell. Since
many of these benchmarks are multi-module programs, and the type inference algorithm
only handles single-module programs, this assumes the existence of a demodulizer to convert
multi-module programs into single-module programs.

5.2.4 Integration with GHC

If type-inference-based deforestation becomes practical to apply to arbitrary programs, it
would be desirable to integrate type-inference-based deforestation into GHC, as an optimiza-
tion pass. This would require finding a way to translate from F back into Core, retaining all
the information that was stored into the original Core AST. An alternative strategy would
be to modify the implementation to operate on Core programs instead of F programs, but

60 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

this would require some fairly major changes to the list abstraction algorithm and supporting
code.

To give a sense for the amount of information that the Core-to-F translator discards,
consider the datatype definition for GHC’s Var:

data Var

= Var {
varName :: Name,

realUnique :: Int#,

varType :: Type,

varDetails :: VarDetails,

varInfo :: IdInfo

}
and the type definition for just one field of this record type:

data IdInfo

= IdInfo {
flavourInfo :: IdFlavour,

arityInfo :: ArityInfo,

demandInfo :: Demand,

specInfo :: CoreRules,

strictnessInfo :: StrictnessInfo,

workerInfo :: WorkerInfo,

unfoldingInfo :: Unfolding,

updateInfo :: UpdateInfo,

cafInfo :: CafInfo,

cprInfo :: CprInfo,

lbvarInfo :: LBVarInfo,

inlinePragInfo :: InlinePragInfo,

occInfo :: OccInfo

}
It should be clear from the complexity of these types that saving and restoring all the infor-
mation they contain would be an extremely nontrivial task. But it would be a necessary task
in order to integrate type-inference-based deforestation into GHC as an optimization pass.
This in turn would be necessary in order to compare type-inference-based deforestation to
other deforestation methods which have been implemented in the past (such as warm fusion
and shortcut deforestation), because the most accurate picture of how an optimization works
in practice can only be obtained by understanding how it interacts with other optimizations,
such as those performed by GHC.

Bibliography

[Chi99] Chitil, Olaf, “Type Inference Builds a Short Cut to Deforestation”, Proceed-
ings of the 1999 ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’99), pp. 249-260, 1999.

[Chi00] Chitil, Olaf, “Type-Inference Based Deforestation of Functional Programs”,
Ph.D thesis, Aachen University of Technology, 2000

[Gil96] Gill, Andrew, “Cheap deforestation for Non-strict Functional Languages”,
Ph.D thesis, Glasgow University, 1996

[GLP93] Gill, Andrew, John Launchbury, and Simon Peyton Jones, “A Short Cut to
Deforestation”, Proceedings of the Conference on Functional Programming
Languages and Computer Architecture (FPCA ’93), pp. 223-232, 1993.

[Hug89] Hughes, John, “Why Functional Programming Matters”, Computer Journal
v. 32 n. 2, pp. 98-107, 1989.

[LS95] Launchbury, John, and Tim Sheard, “Warm Fusion: Deriving Build-Catas
from Recursive Definitions”, Proceedings of the Conference on Functional Pro-
gramming Languages and Computer Architecture (FPCA ’95), pp. 314-322,
1995.

[MFP91] Meijer, Erik, Maarten Fokkinga, and Ross Paterson, “Functional Program-
ming with Bananas, Lenses, Envelopes, and Barbed Wire”. In John Hughes,
editor, Functional Programming Languages and Computer Architecture, LNCS
523, pp. 124-144. Springer, June 1991

[Ném00] Németh, László, “Catamorphism Based Program Transformations for Non-
Strict Functional Languages”, Ph.D thesis, University of Glasgow, 2000

[Wad90] Wadler, Philip, “Deforestation: transforming programs to eliminate trees”,
Theoretical Computer Science, v. 73, pp. 231-248, 1990.

61

62 BIBLIOGRAPHY

Appendix A

Haskell Code

A.1 List of Modules

Main.hs is the main driver for the system; it uses code from GHC, ParseFile.hs, and
TransCore.hs to translate the Haskell input into F, then invokes RunTypeInference.hs to
do the rest of the work.

Typecheck.hs is the F typechecker and Eval.hs is the F interpreter. Eval.hs uses
auxiliary code in Table.hs and Result.hs. F2Haskell.hs is the F-to-Haskell translator.

The previous files were all primarily written by me. The remaining files, which implement
the syntax of F and the list abstraction algorithm, were primarily written by Olaf Chitil
(except for CountIO.hs, which was added by me), with changes by me where indicated.

A.2 Main.hs

-- Driver that calls GHC functions, performs Core-to-F translation,
-- and then hands control to driver for type inference
-- By Kirsten Chevalier, with code from GHC’s Main.hs
module Main where
import qualified Outputable
import qualified Desugar
import qualified TcModule
import qualified RnMonad
import qualified Rename
import qualified UniqSupply
import qualified Module
import qualified ParseFile
import qualified Core
import TransCore
import PrettyCore
import CoreSyn
import Var
import Name(mkSysLocalName, nameOccName)
import OccName(decode, occNameString)
import Unique
import FastString
import TypeRep

63

64 APPENDIX A. HASKELL CODE

import TysWiredIn
import IdInfo
import Literal
import ErrUtils
import PprCore
import TysPrim
import RunTypeInference
import System
import List
import Eval(eval)
import Result

test :: Core.CoreExpr -> IO (Bool)
test expr = testTypeInference [] expr

main = do
--------------- copied from GHC’s Main.lhs, and trimmed -----------------

{ -- get filename from command line:
(infile:_) <- getArgs;
-- parse the input file:
(mod_name, rdr_module) <- ParseFile.parseFile infile;
rn_uniqs <- UniqSupply.mkSplitUniqSupply ’r’; -- renamer
tc_uniqs <- UniqSupply.mkSplitUniqSupply ’a’; -- typechecker
ds_uniqs <- UniqSupply.mkSplitUniqSupply ’d’; -- desugarer
maybe_rn_stuff <- Rename.renameModule rn_uniqs rdr_module;
(desugared, _, _, _, _) <-

-------------------------- Renaming ----------------
case maybe_rn_stuff of
{
Just (this_mod, rn_mod, iface_file_stuff, rn_name_supply, _) ->

-------------------------- Typechecking ----------------

TcModule.typecheckModule tc_uniqs rn_name_supply
iface_file_stuff rn_mod >>= \ maybe_tc_stuff ->

case maybe_tc_stuff of {
Just tc_results ->

-------------------------- Desugaring ----------------

Desugar.deSugar this_mod ds_uniqs tc_results}};
-- We assume there’s a function called main, and use that as the body
-- of a let expression, with the rest of the bindings as the decls.

-- <res> indicates whether the original expression and the deforested
-- expression evaluated to the same value
res <- test (toFLet desugared);
putStrLn (show res)
}

--------------end code copied from GHC’s Main.lhs -----------------

-- assumes: there is a function main = putStr (show foo)
-- foo becomes the body of the let
toFLet :: [CoreBind] -> Core.CoreExpr
toFLet binds =

A.3. RUNTYPEINFERENCE.HS 65

(Core.Let (transFlattenedBinds (removeGarbage flat))
(case (pluck(findName "main" flat)) of
(_, (App _ (App _ bdy))) -> (trans bdy)
_ -> error "main is not of the form <putStr (show foo)>"))

where
flat = (CoreSyn.flattenBinds binds)
findName :: String -> [(Var, CoreExpr)] -> Maybe(Var, CoreExpr)
findName str binds =
-- returns the binding for the variable <str>

(find (\ (bndr, _) ->
(((decode

(occNameString
(nameOccName
(varName bndr)))) == str)))

binds)
removeGarbage :: [(Var, CoreExpr)] -> [(Var, CoreExpr)]
removeGarbage binds =
-- removes bindings for main, show, $dshow

(filter (\ (bndr, _) -> let thisName = (decode
(occNameString

(nameOccName
(varName bndr))))

in
((thisName /= "main") &&

(thisName /= "show") && (thisName /= "$dShow"))) binds)
mkApp :: Core.CoreExpr -> [Core.CoreExpr] -> Core.CoreExpr
mkApp f args = foldl Core.App f args

pluck :: Maybe a -> a
pluck (Just x) = x
pluck Nothing = error "Main: pluck invoked on Nothing"

A.3 RunTypeInference.hs

-- Supplies the testTypeInference function, which takes an F AST,
-- applies list abstraction and shortcut deforestation to it, and
-- typechecks and interprets it
-- By Kirsten Chevalier
module RunTypeInference where

import Prelude
import List
import Core
import PrettyCore
import TypeInference
import MonadTransformer
import ThisUnique
import Typecheck
import ThisUtil
import Eval

66 APPENDIX A. HASKELL CODE

import Result
import F2Haskell
import Build
import Maybe

testTypeInference :: [(Id,CoreExpr)] -> CoreExpr -> IO (Bool)

testTypeInference binds expr = do
-- putStrLn "\nInput Expression:";
-- prettyIO expr;
--putStrLn $ "buildListBuild";
--firsttest <- (buildListBuild (mkMyUniqSupply 100) emptyUFM expr);
--prettyIO (fromJust firsttest);
exprTy <- typecheck expr;
exprVal <- eval expr;
abstracted <- (searchForFoldrs (mkMyUniqSupply 100) expr);
putStrLn $ "Performing list abstraction"
--prettyIO abstracted;
abstractedTy <- typecheck abstracted;
abstractedVal <- eval abstracted;
deforested <- (shortcut abstracted);
putStrLn $ "Applying shortcut rule";
--prettyIO deforested;
deforestedTy <- typecheck deforested;
deforestedVal <- eval deforested;
-- This doesn’t simplify all type applications.
-- Haven’t checked yet whether f2haskell works after this.
simplified <- simplify deforested
putStrLn $ "Simplifying type applications"
prettyIO simplified
simplifiedTy <- typecheck simplified;
simplifiedVal <- eval simplified;

let typecheckWorked = (allTheSame [exprTy, abstractedTy, deforestedTy, simplifiedTy]);
let evalWorked = (allTheSame [exprVal, abstractedVal, deforestedVal, simplifiedVal]);

(if typecheckWorked then
putStrLn $ "Type checking succeeded! All expressions have type " ++ (pretty exprTy)

else
putStrLn $ "Type mismatch: \n Input expression has type "

++ (pretty exprTy) ++ "\nList-abstracted expression has type "
++ (pretty abstractedTy) ++ "\nDeforested expression has type "
++ (pretty deforestedTy) ++ "\nSimplified expression has type "
++ (pretty simplifiedTy))

(if evalWorked then
putStrLn $ "Evaluation succeeded! All expressions have value " ++ (show exprVal)

else
putStrLn $ "Value mismatch: \n Input expression has value "

++ (show exprVal) ++ "\nList-abstracted expression has value "
++ (show abstractedVal) ++ "\nDeforested expression has value "
++ (show deforestedVal) ++ "\nSimplified expression has value "
++ (show simplifiedVal))

return(typecheckWorked && evalWorked)

A.3. RUNTYPEINFERENCE.HS 67

shortcut :: CoreExpr -> IO (CoreExpr)
-- foldr e_cons e_nil (build (\ c n -> <exp>))
-- => ((\ c n -> <expr>) resultTy e_cons e_nil)
-- where resultTy = type of e_nil
shortcut a@(App (App (App (App (App (Var id) ty1) ty2) f) start)

(App (App (Var argId) buildTy) abstractList)) =
(if ((nameEquals id "foldr") && (argId == buildId)) then

do
newf <- (shortcut f)
newstart <- (shortcut start)
newlist <- (shortcut abstractList)
resultTy <- typecheck start
let res = (App (App (App newlist (Type resultTy)) newf) newstart)
return res

else
(mapExprExprM shortcut a))

shortcut expr =
(mapExprExprM shortcut expr)

insertBuild :: Unique -> Unique -> Unique -> Type -> CoreExpr -> CoreExpr
insertBuild newNilPlaceholderUnique newConsPlaceholderUnique resultTyUnique

elementTy expr =
-- Renames c4 and n3 to c<newConsPlaceholderUnique> and n<newNilPlaceholderUnique>
-- Renames build101 to resultTy<resultTyUnique>
-- Binds these three variables with a a lambda
-- Applies (build elementTy) to the resulting lambda abstraction

(App
(App (Var buildId) (Type elementTy))
(Lam resultTy (Lam consPlaceholder

(Lam nilPlaceholder
(replaceBuild (replace (listToUFM [(nilPlaceholderUnique, nilPlaceholder),

(consPlaceholderUnique, consPlaceholder)])
expr))))))

where
-- replace build101 with resultTy
replaceBuild expr = (substExpr (listToUFM [(buildTyVar, resultTyVar)]) expr)
replace newUniques (Var id) = (Var (replaceId newUniques id))
replace newUniques expr = (mapExprExpr (replace newUniques) expr)
replaceId newUniques id =

(case (lookupUFM newUniques (idUnique id)) of
(Just newPlaceholder) -> newPlaceholder
Nothing -> id)

nilTy = resultTyVar
consTy = (FunTy elementTy (FunTy resultTyVar resultTyVar))
nilPlaceholder = (mkSysLocal "n" newNilPlaceholderUnique nilTy)
consPlaceholder = (mkSysLocal "c" newConsPlaceholderUnique consTy)
resultTy = (smpTyVar "resultTy" resultTyUnique)
resultTyVar = (TyVarTy resultTy)

searchForFoldrs :: UniqSupply -> CoreExpr -> IO (CoreExpr)
-- searches for expressions of the form <foldr f start l>

68 APPENDIX A. HASKELL CODE

-- and applies buildListBuild to l
searchForFoldrs us (v@(Var _)) = return v
searchForFoldrs us (l@(Lit _)) = return l
searchForFoldrs us c@(Con con []) = return c
searchForFoldrs us (Con con (arg:args)) =

do
newarg <- searchForFoldrs us1 arg
rest <- (searchForFoldrs us2 (Con con args))
case rest of
(Con con args’) -> return (Con con (newarg:args’))

where
(us1, us2) = (splitUniqSupply us)

searchForFoldrs us a@(App (App (App (App (App (Var id) ty1@(Type t1))
ty2@(Type t2)) f) start) arg) =

if (nameEquals id "foldr") then
do
newarg <- (searchForFoldrs newus arg) -- handle subexpressions
newf <- (searchForFoldrs us1 f)
newstart <- (searchForFoldrs us2 start)
case newarg of

-- if arg is just a variable, bail out. really should pass in bindings instead...
-- This won’t be necessary once cloning is implemented.
(Var _) -> return a

_ ->
do

maybeBuildExpr <- (buildListBuild us’ emptyUFM newarg)
(case maybeBuildExpr of
Just buildExpr -> return(App (App (App (App (App (Var id) ty1) ty2) f) start)

-- t1 is the element type
(insertBuild nUnique cUnique resultTyUnique t1 buildExpr))

Nothing -> error ("Type inference failed on expression " ++ (pretty newarg)))
else

searchForFoldrsInApp us a
where
(us’, newus) = (splitUniqSupply us)
(us1, us2) = (splitUniqSupply us’)
[nUnique, cUnique, resultTyUnique] = (uniqsFromSupply 3 us2)

searchForFoldrs us a@(App fun arg) = (searchForFoldrsInApp us a)
searchForFoldrs us (Lam arg body) =

do
body’ <- (searchForFoldrs us body)
return (Lam arg body’)

searchForFoldrs us (Let binds body) =
do
binds’ <- (searchForFoldrsInBinds us1 binds)
body’ <- (searchForFoldrs us2 body)
return (Let binds’ body’)
where
(us1, us2) = splitUniqSupply us

searchForFoldrs us (Case exp var alts) =
do
exp’ <- (searchForFoldrs us1 exp)
alts’ <- (searchForFoldrsInAlts us2 alts)

A.4. PARSEFILE.HS 69

return (Case exp’ var alts’)
where
(us1, us2) = splitUniqSupply us

searchForFoldrs us (t@(Type ty)) = return t

searchForFoldrsInApp us (App fun arg) = do
fun’ <- (searchForFoldrs us1 fun)
arg’ <- (searchForFoldrs us2 arg)
return (App fun’ arg’)
where
(us1, us2) = splitUniqSupply us

searchForFoldrsInBinds :: UniqSupply -> CoreBind -> IO (CoreBind)
searchForFoldrsInBinds us (NonRec var exp) =

do
exp’ <- (searchForFoldrs us exp)
return (NonRec var exp’)

searchForFoldrsInBinds us r@(Rec []) = return r
searchForFoldrsInBinds us (Rec ((var, exp):binds)) =

do
newexp <- searchForFoldrs us1 exp
rest <- searchForFoldrsInBinds us2 (Rec binds)
case rest of

(Rec newbinds) -> return (Rec ((var, newexp):newbinds))
where
(us1, us2) = (splitUniqSupply us)

searchForFoldrsInAlts :: UniqSupply -> [Alt Var] -> IO ([Alt Var])
searchForFoldrsInAlts us [] = return []
searchForFoldrsInAlts us ((pat, var, exp):alts) =

do
newexp <- searchForFoldrs us1 exp
rest <- searchForFoldrsInAlts us2 alts
return ((pat, var, newexp):rest)
where
(us1, us2) = (splitUniqSupply us)

simplify :: CoreExpr -> IO (CoreExpr)
-- beta-reduces any type applications in exp
simplify (App l@(Lam _ _) t@(Type _)) =

return (tyBetaReduce l [t])
simplify expr = mapExprExprM simplify expr

A.4 ParseFile.hs

-- * ParseFile contains a bit of code stolen from

70 APPENDIX A. HASKELL CODE

-- ghc-4.08/fptools/ghc/compiler/main/Main.lhs
-- By Kate Golder

module ParseFile where
import IO (hPutStr, stderr)
import HsSyn
import BasicTypes (NewOrData(..))

import RdrHsSyn (RdrNameHsModule)
import FastString (mkFastCharString, unpackFS)
import StringBuffer (hGetStringBuffer)
import Parser (parse)
import Lex (PState(..), P, ParseResult(..))
import SrcLoc (mkSrcLoc)

import Rename (renameModule)
import RnMonad (InterfaceDetails(..))

import MkIface (startIface, ifaceDecls, endIface)
import TcModule (TcResults(..), typecheckModule)
import Module (ModuleName, moduleNameUserString)
import CmdLineOpts
import ErrUtils (ghcExit)
import Outputable

parseFile :: String -> IO (ModuleName, RdrNameHsModule)
parseFile filename = do

{
buf <- hGetStringBuffer True filename;
let parsed = (parse buf PState{ bol = 0#,

atbol = 1#,
context = [],

glasgow_exts = glaexts,
loc = mkSrcLoc src_filename 1 })

in do{
case parsed of

PFailed err -> do
putStrLn "parse error"

printErrs err
ghcExit 1
return (error "parseModule")

POk _ m@(HsModule mod _ _ _ _ _ _) -> return (mod, m)}
}

where
glaexts | opt_GlasgowExts = 1#
| otherwise = 0#

A.5. TRANSCORE.HS 71

A.5 TransCore.hs

-- Core to F translation
-- By Kirsten Chevalier
module TransCore
where
import qualified Core
import qualified CoreSyn
import qualified IdInfo
import qualified DataCon
import qualified Literal
import qualified Name
import qualified OccName
import qualified Unique
import qualified Var
import qualified TypeRep
import qualified TysWiredIn
import qualified TysPrim
import qualified Id
import PrelBase
import PprCore
import PprType
import PrettyCore
import Outputable
import GlaExts -- necessary in order to use S#

-- takes a Core expression and returns the corresponding F expression
trans :: CoreSyn.CoreExpr -> Core.CoreExpr
trans (CoreSyn.Var id) =

case (Id.idFlavour id) of
(IdInfo.DataConWrapId con) ->

(if (con == TysWiredIn.trueDataCon) then
(Core.Con Core.true [])
else if (con == TysWiredIn.falseDataCon) then
(Core.Con Core.false [])
else
(Core.Var (transId id)))

(IdInfo.DataConId con) ->
(if (con == TysWiredIn.trueDataCon) then
(Core.Con Core.true [])
else if (con == TysWiredIn.falseDataCon) then
(Core.Con Core.false [])
else
(Core.Var (transId id)))

_ -> (Core.Var (transId id))
trans (CoreSyn.Lit l) = (Core.Lit (transLit l))
-- Cons
trans a@(CoreSyn.App

(CoreSyn.App (CoreSyn.App (CoreSyn.Var var) ty1) arg1) arg2) =

72 APPENDIX A. HASKELL CODE

case (Id.idFlavour var) of
(IdInfo.DataConId con) -> handleCons con a
(IdInfo.DataConWrapId con) -> handleCons con a
otherwise -> (transApp a)

where handleCons con a@(CoreSyn.App
(CoreSyn.App
(CoreSyn.App
(CoreSyn.Var var)
ty1)

arg1)
arg2) = if (con == TysWiredIn.consDataCon) then

(Core.Con Core.cons [(trans ty1),
(trans arg1),
(trans arg2)])
else
(transApp a)

-- Nil
trans a@(CoreSyn.App (CoreSyn.Var var) ty1) =

case (Id.idFlavour var) of
(IdInfo.DataConId con) -> handleNil con a
(IdInfo.DataConWrapId con) -> handleNil con a
otherwise -> (transApp a)

where handleNil con a@(CoreSyn.App
(CoreSyn.Var var)
ty1) = if (con == TysWiredIn.nilDataCon) then

(Core.Con Core.nil [(trans ty1)])
else
(transApp a)

trans a@(CoreSyn.App _ _) = (transApp a)
trans (CoreSyn.Lam arg exp) = (Core.Lam (transId arg) (trans exp))
trans (CoreSyn.Let binds exp) = (Core.Let (transBinds binds) (trans exp))
trans (CoreSyn.Case exp var alts) = (Core.Case (trans exp)

(transId var)
(transAlts alts))

trans (CoreSyn.Note _ exp) = (trans exp)
trans (CoreSyn.Type ty) = (Core.Type (transTy ty))

transApp :: CoreSyn.CoreExpr -> Core.CoreExpr
transApp (CoreSyn.App

fun@(CoreSyn.Var id)
arg) = case (IdInfo.flavourInfo (Var.varInfo id)) of

IdInfo.DataConId con -> (transCon id arg)
otherwise -> (Core.App (trans fun) (trans arg))

transApp (CoreSyn.App fun arg) = (Core.App (trans fun) (trans arg))

transBinds :: CoreSyn.CoreBind -> Core.CoreBind
transBinds (CoreSyn.NonRec var exp) = (Core.NonRec (transId var) (trans exp))
transBinds (CoreSyn.Rec binds) = (Core.Rec (zip (map transId names)
(map trans exps)))

where (names, exps) = (unzip binds)
transFlattenedBinds :: [(CoreSyn.CoreBndr, CoreSyn.CoreExpr)] -> Core.CoreBind
transFlattenedBinds binds = (transBinds (CoreSyn.Rec binds))

A.5. TRANSCORE.HS 73

transAlts :: [CoreSyn.CoreAlt] -> [Core.CoreAlt]
transAlts alts = (map transAlt alts)
transAlt :: CoreSyn.CoreAlt -> Core.CoreAlt
transAlt (altcon, args, exp) =

(case altcon of
CoreSyn.DataAlt dc -> (if (dc == TysWiredIn.nilDataCon) then

(Core.ConPat (Core.nil))
else (if (dc == TysWiredIn.consDataCon) then

(Core.ConPat (Core.cons))
else (if (dc == TysWiredIn.trueDataCon) then

(Core.ConPat (Core.true))
else (if (dc == TysWiredIn.falseDataCon) then

(Core.ConPat (Core.false))
else

(Core.ConPat
(Core.C (transName

(DataCon.dataConName dc))))))))
CoreSyn.LitAlt l -> Core.LitPat (transLit l)
CoreSyn.DEFAULT -> Core.DEFAULT,
(map transId args), (trans exp))

transName :: Name.Name -> Core.Name
transName nm = Core.mkSysLocalName (S# (Unique.u2i (Name.nameUnique nm)))

(OccName.decode (OccName.occNameString (Name.nameOccName nm)))

transLit :: Literal.Literal -> Core.Literal
transLit l = case l of

Literal.MachChar c -> Core.MachChar c
Literal.MachInt i -> Core.MachInt i

otherwise -> error ("TransCore: type of " ++
(show l) ++
" not supported")
transId :: Var.Id -> Core.Id
transId v = (Core.mkIdVar (transName (Var.idName v)) (transTy (Var.idType v)))

transTy :: TypeRep.Type -> Core.Type
transTy (TypeRep.TyVarTy tv) = (Core.TyVarTy (transId tv))
transTy (TypeRep.AppTy t1 t2) = error "transTy: AppTy"
transTy (t@(TypeRep.TyConApp tc tys)) =

(Core.TyConApp (if (tc == TysWiredIn.listTyCon) then
Core.List
else if (tc == TysWiredIn.pairTyCon) then
Core.Tuple
else if (tc == TysWiredIn.boolTyCon) then
Core.Bool
else if (tc == TysWiredIn.intTyCon) then
Core.Int
else if (tc == TysWiredIn.charTyCon) then
Core.Char
else if (tc == TysPrim.intPrimTyCon) then
Core.Int

else if (tc == TysPrim.charPrimTyCon) then
Core.Char

74 APPENDIX A. HASKELL CODE

else
Core.Int) -- iffy default case
(map transTy tys))

transTy (TypeRep.FunTy t1 t2) = (Core.FunTy (transTy t1) (transTy t2))
transTy (TypeRep.NoteTy tn ty) = transTy ty
transTy (TypeRep.ForAllTy tv ty) = (Core.ForAllTy (transId tv) (transTy ty))

transCon :: Var.Var -> CoreSyn.CoreExpr -> Core.CoreExpr
transCon con arg = (Core.App (Core.Var (transId con)) (trans arg))

A.6 Typecheck.hs

-- A type checker for F
-- By Kirsten Chevalier

module Typecheck
where
import Core
import PrettyCore
import TypeInference
import ThisUnique
import List
import ThisUtil
import Monad
import Build

-- For debugging
say :: CoreExpr -> IO()
say exp = return()

--
--putStrLn $ "typechecking " ++ (pretty exp)

sayR :: CoreExpr -> Type -> IO()
sayR exp ty = return()

--
--putStr ("typecheck: " ++ (pretty exp) ++ " has type " ++ (pretty ty) ++ "\n")

typecheck :: CoreExpr -> IO (Type)

typecheck v@(Var id) = do
say v
let res = idType id
sayR v res
return res

typecheck l@(Lit (MachChar _)) = do

A.6. TYPECHECK.HS 75

say l
let res = charTy
sayR l res
return res

typecheck l@(Lit (MachInt _)) = do
say l
let res = intTy
sayR l res
return intTy

typecheck c@(Con con args) = do
say c
let (tyargs, termargs) = span isTypeArg args
let appliedTy = applyTys (dataConType con)

(map (\ (Type ty) -> ty) tyargs)
argTys <- typecheckList termargs
let res = (foldl typeApply appliedTy argTys)
sayR c res
return(res)

typecheck a@(App fun (Type tyArg)) = do
say a
funTy <- typecheck fun
let res = (case funTy of

f@(ForAllTy _ _) -> (applyTy f tyArg)
_ -> error $ "typecheck: app: attempt to"

++ "apply an expression of non-forall-type to a type")
sayR a res
return res

-- Special case for build
typecheck a@(App (App (Var funId) (Type someTy)) buildArg) = do
(if (funId == buildId) then

(typecheckBuild a)
else
(typecheckApp a))

typecheck a@(App fun arg) = (typecheckApp a)

typecheck l@(Lam arg body) = do
say l
argTy <- typecheck (Var arg)
bodyTy <- (typecheck body)
let res = (case argTy of

-- Eventually, this case should check that the type variable (<arg>) is not free
-- in the surrounding type environment, but this is a technicality.

(TyConApp Kind _) -> (ForAllTy arg bodyTy)
_ -> (FunTy argTy bodyTy))

sayR l res
return res

typecheck l@(Let binds body) = do
say l

76 APPENDIX A. HASKELL CODE

bindTys <- (typecheckBind binds)
res <- typecheck body
sayR l res
return res

typecheck c@(Case expr var alts) = do
say c

-- typecheck expr
exprTy <- typecheck expr

-- typecheck alts
(lhsTys, rhsTys) <- typecheckAlts alts

-- make sure all lhsTys are the same and all rhsTys are the same
let res = (if (not ((allTheSame lhsTys) && (allTheSame rhsTys))) then

error "typecheck: alternatives have different types in case"
else
(head rhsTys))

sayR c res
return res

typecheck (Type _) = error $ "typecheck: this shouldn’t happen\n"
++ "typecheck: attempt to typecheck a type"

typecheckBind :: CoreBind -> IO([Type])
typecheckBind (NonRec var expr) = do

varTy <- typecheck (Var var)
exprTy <- typecheck expr
return(if (varTy == exprTy) then

[exprTy]
else

error "typecheckBind: lhs and rhs of bind don’t match")
typecheckBind (Rec binds) = do
tys <- mapM typecheckBind (map (\ (var, exp) -> (NonRec var exp)) binds)
return(concat tys)

typecheckAlts :: [CoreAlt] -> IO([Type], [Type])
typecheckAlts alts = do
firstTy <- (typecheck (thrd3 (head alts)))
(mapAndUnzipM typecheckAlt alts)

typecheckAlt :: CoreAlt -> IO(Type, Type)
typecheckAlt (pat, vars, expr) = do
-- typecheck expr
-- check that pat matches vars
exprTy <- (typecheck expr)
(case pat of

-- This should really reconstruct the type arguments for the
-- constructor and typecheck the constructor application corresponding
-- to the pattern.
-- should check the LHS, but for now assume it has same type as RHS

(ConPat con) -> return (exprTy, exprTy)
(LitPat lit) -> do

litTy <- typecheck (Lit lit)
return(litTy, exprTy)

DEFAULT -> return(exprTy, exprTy))

A.7. EVAL.HS 77

typecheckApp a@(App fun arg) = do
say a
funTy <- typecheck fun
argTy <- typecheck arg
let res = typeApply funTy argTy
sayR a res
return res

typecheckBuild a@(App (App (Var buildId) (Type someTy)) buildArg) = do
argTy <- typecheck buildArg
(case argTy of

-- Using == is *not* sketchy here!
(ForAllTy tyVar (FunTy (FunTy first (FunTy second third))

(FunTy fourth fifth))) ->
(if ((first == someTy)

&& (all ((==) (TyVarTy tyVar))
[second, third, fourth, fifth])) then

return(TyConApp List [someTy])
else
error $ "typecheck: argument to build has wrong type, namely " ++ (pretty argTy))

_ -> error $ "typecheck: argument to build has wrong type")

typeApply f@(FunTy formalTy resTy) actualTy =
if (formalTy /= actualTy) then

error $ "typecheck: typeApply: type mismatch applying "
++ (pretty f) ++ " to " ++ (pretty actualTy)

else
resTy

typeApply funty argty =
error $ "typecheck: typeApply: attempt to apply non-function type,"

++ " namely " ++ (pretty funty) ++ " and " ++ (pretty argty)

typecheckList :: [CoreExpr] -> IO([Type])
typecheckList exps = (mapM typecheck exps)

A.7 Eval.hs

-- An interpreter for F -- assumes that code has already been
-- typechecked
-- By Kirsten Chevalier
module Eval
where

import Table
import Core
import PrettyCore

78 APPENDIX A. HASKELL CODE

import Monad
import List
import ThisUtil
import Result
import ThisUnique
import Build
import IOExts(fixIO)

-- May 26:
-- The interpreter goes into an infinite loop on
-- Test/Working/goal-inlined.hs if I uncomment the "say"s!
-- I wonder why?

-- For debugging
say expr = return()
--
-- putStrLn $ "evaluating " ++ (toString expr) --
sayR res expr = return()
-- putStrLn $ "returning " ++ (showResult res) ++ ", result of evaluating "
-- ++ (pretty expr)
--

eval :: CoreExpr -> IO (Result)
eval expr = (eval’ EmptyTable expr)

eval’ :: Env -> CoreExpr -> IO (Result)
eval’ env v@(Var id) = do
say v
(case (tableLookup id env) of
(Just (ExprRes(expr, itsenv))) -> do
res <- (eval’ itsenv expr)
sayR res v
return res

(Just val) -> do
sayR val v
return val

------------------ change this back
Nothing -> (case (tableLookupString id funenv) of

(Just res) -> do
sayR res v
return res

-- look these up by name, rather than unique, since they may have different
-- uniques in different programs

Nothing -> (case (tableLookupString id specialenv) of
(Just res) -> return res
Nothing -> error $ "eval: unbound variable: "

++ (pretty (idName id)))))
eval’ env ch@(Lit (MachChar c)) = do
say ch
let res = (CharRes c)
sayR res ch
return res

eval’ env l@(Lit (MachInt i)) = do

A.7. EVAL.HS 79

say l
let res = (IntRes i)
sayR res l
return res

eval’ env c@(Con con args) = do
say c

-- Throw away type arguments
newargs <- (mapM (eval’ env) (filter (\ x -> (not (isTypeArg x))) args))
let len = length newargs
let res = (if (con == cons) then

(if (len == 2) then
listresCons (head newargs) (tail newargs)
else
error $ "eval: cons applied to " ++ (show len) ++
" args, expects 2 args\n" ++ "offending expr = " ++
(pretty c) ++ " whose args are " ++
(showResult (ListRes newargs)))
else if (con == tuple) then
(if (len == 2) then
(TupleRes ((head newargs),(head (tail newargs))))
else
error $ "eval: tuple applied to " ++ (show len)
++ " args, expects 2 args")
else if (con == nil) then
(if (len == 0) then
(ListRes [])
else
error $ "eval: nil applied to " ++ (show len) ++
" args, expects 0 args" ++ "offending expr = " ++
(pretty c) ++ " whose args are " ++
(showResult (ListRes newargs)))
else if ((con == true’) || (con == true)) then
(if (len == 0) then
(BoolRes True)
else
error $ "eval: true applied to " ++ (show len) ++
" args, expects 0 args")

else if ((con == false’) || (con == false)) then
(if (len == 0) then
(BoolRes False)
else
error $ "eval: false applied to " ++ (show len) ++
" args, expects 0 args")

else
error $ "eval: unknown constructor " ++ (pretty con))

sayR res c
return res

eval’ env a@(App fun (Type _)) = do
say a
fun’ <- eval’ env fun
sayR fun’ a

-- Ignore type arguments
return fun’

80 APPENDIX A. HASKELL CODE

------------------- Special case for build
eval’ env a@(App (App (Var funId) (Type _)) buildExpr) = do

say a
(if (funId == buildId) then
do
res <- (eval’ env (App (App buildExpr
(Lam x (Lam xs
(Con cons [(Var x),(Var xs)]))))

(Con nil [])))
sayR res a
return res
else do
res <- (evalFun env a)
sayR res a
return res)

eval’ env a@(App fun arg) = do
say a
res <- evalFun env a
sayR res a
return res

eval’ env l@(Lam arg body) = do
say l

-- check if it’s a type lambda; if so, just evaluate the body
res <- (case (varDetails arg) of
TyVar -> (eval’ env body)

_ -> return(Closure(arg, body, env)))
sayR res l
return res

eval’ env l@(Let binds body) = do
say l

-- Tried to do:
-- newenv <- (binds2env binds env)
-- but it doesn’t work (causes an infinite loop). Not sure why.
newenv <- (insertBinds (reverse (flattenBinds binds)) env)
res <- (eval’ newenv body)
sayR res l
return res

eval’ env exp@(Case c var alts) = do
say exp
caseexp <- eval’ env c
let (con, vars, body) = findMatch caseexp alts
res <-

(eval’
(tableInsert var caseexp
(case caseexp of
(ListRes []) -> env
(ListRes (x:xs)) -> (case con of

(ConPat c) -> (if (c == cons) then
(tableExtend vars
[x, (ListRes xs)] env)
else
env)
_ -> error $ "eval’: this can’t happen")

A.7. EVAL.HS 81

-- this case handles an arbitrary constructor of one argument;
-- more cases would have to be added here if other constructors
-- were added to the language

_ -> (tableExtend vars [caseexp] env)))
body)

sayR res exp
return res

eval’ env exp = do
say exp
error $ "eval: attempt to evaluate " ++ (toString exp)

{-
binds2env :: CoreBind -> Env -> IO Env
-- extends <env> with the bindings in <bind>
binds2env (NonRec v expr) env = do

newexpr <- eval’ env expr
return(tableInsert v newexpr env)

binds2env (Rec binds) env =
let (vars, exprs) = unzip binds
in do

fixIO (\ newenv -> do
-- pretend we know the new environment and evaluate each binding in it

newexprs <- (mapM (\ expr -> do
eval’ newenv expr) exprs)

-- then extend the old environment with the new bindings
return (tableExtend vars newexprs env)) -}

evalFun :: Env -> CoreExpr -> IO (Result)
evalFun env (App fun (Type _)) = (eval’ env fun)
evalFun env a@(App fun arg) = do

res’ <- (eval’ env fun)
case res’ of

(Closure (v, b, returnedEnv)) -> do
newarg <- eval’ env arg
res <- (eval’ (tableInsert v newarg

returnedEnv) b)
return res
(CurriedPrim (primop, numargs, args)) -> do

newarg <- eval’ env arg
(if (((length args) + 1) == numargs) then

return(applyPrimop primop (args ++ [newarg]))
else

return(CurriedPrim(primop, numargs, args ++ [newarg])))
exp -> error $ "eval: attempt to apply " ++ (showResult exp)

applyPrimop :: Primop -> [Result] -> Result
applyPrimop (primopId, fcn) args = (fcn args)

insertBinds :: [(Var, CoreExpr)] -> Env -> IO (Env)
insertBinds [] env = return env
insertBinds binds env =

82 APPENDIX A. HASKELL CODE

-- this implements lazy evaluation (and lexical scope) for <let> expressions
let (vars, exprs) = unzip binds

newenv = (tableExtend vars (map (\ expr -> (ExprRes(expr, newenv))) exprs) env)
in

return newenv

flattenBinds :: Bind b -> [(b, Expr b)]
flattenBinds bnds = (foldr (\ bind rest ->

(case bind of
(NonRec var expr) -> (var, expr):rest
(Rec binds) -> binds ++ rest))
[]
[bnds])

findMatch :: Result -> [CoreAlt] -> CoreAlt
findMatch result alts = (case result of
(ListRes l) -> (findMatchList l alts)
(IntRes i) -> (findMatchLit result alts)
(CharRes c) -> (findMatchLit result alts)
(BoolRes b) -> (findMatchCon
(if b then true’ else false’) alts)
_ -> error $ "findMatch " ++ (showResult result))

findMatchList :: [Result] -> [CoreAlt] -> CoreAlt
findMatchList l alts = (case l of
[] -> (findMatchCon nil alts)
(x:xs) -> (findMatchCon cons alts))

findMatchCon :: Con -> [CoreAlt] -> CoreAlt
findMatchCon con alts =

(case
(filter
(\ thing ->
case thing of
(DEFAULT, _, _) -> True
((ConPat c), _, _) -> (conEquals c con)) alts) of

[] -> error $ "findMatchCon: nonexhaustive patterns in case, con = "
++ (pretty con) ++ " pats’re " ++
(concat (map pretty (fst3 (unzip3 alts))))

(alt:_) -> alt)

findMatchLit :: Result -> [CoreAlt] -> CoreAlt
findMatchLit litRes alts =

(case (filter (\ thing -> case thing of
((LitPat lit), _, _) -> (litEquals lit litRes)

(DEFAULT, _, _) -> True
((ConPat con), _, _) ->

((getUnique con) == (getUnique isharp))) alts) of
[] -> error $ "findMatchLit: nonexhaustive patterns in case; pats’re "

++ (concat (map pretty (fst3 (unzip3 alts)))) ++ " expr is " ++
(showResult litRes)

(alt:_) -> alt)

A.7. EVAL.HS 83

conEquals :: Con -> Con -> Bool
conEquals c1 c2 = ((c1 == true’) && (c2 == true))

|| ((c1 == true) && (c2 == true’))
|| ((c1 == false) && (c2 == false’))

|| ((c1 == false’) && (c2 == false))
|| (c1 == c2)

litEquals :: Literal -> Result -> Bool
litEquals (MachChar c1) (CharRes c2) = (c1 == c2)
litEquals (MachInt i1) (IntRes i2) = (i1 == i2)
litEquals _ _ = False

listresCons :: Result -> [Result] -> Result
listresCons thing1 [(ListRes [])] = (ListRes [thing1])
listresCons thing1 [(ListRes lst)] = (ListRes (thing1:lst))

------------------ definitions for Prelude ---------------------
true’ = C Named{n_occ="True", n_uniq= 905969692}
false’ = C Named{n_occ="False", n_uniq= 905969672}
listAlphaTy = TyConApp List [alphaTy]
listBetaTy = TyConApp List [betaTy]
f = (mkId (mkSysLocalName 1 "f") (FunTy alphaTy (FunTy betaTy betaTy)))
z = (mkId (mkSysLocalName 2 "z") betaTy)
l = (mkId (mkSysLocalName 3 "l") listAlphaTy)
foo = (mkId (mkSysLocalName 4 "foo") listAlphaTy)
x = (mkId (mkSysLocalName 5 "x") alphaTy)
xs = (mkId (mkSysLocalName 6 "xs") listAlphaTy)
myfoldr = (mkId (mkSysLocalName 805306375 "foldr")

(ForAllTy alpha
(ForAllTy beta
(FunTy (FunTy alphaTy (FunTy betaTy betaTy))
(FunTy betaTy (FunTy listAlphaTy betaTy))))))

mymap = (mkId (mkSysLocalName 805306488 "map")
(ForAllTy alpha
(ForAllTy beta
(FunTy (FunTy alphaTy betaTy)
(FunTy listAlphaTy listBetaTy)))))

idfun (result:_) = result
idfun l = error $ "id applied to wrong number of args, namely"

++ (concat (map showResult l))

------------ Prelude functions -- incomplete listing -----------------------
minus = (mkId (mkSysLocalName 805306471 "-") (FunTy intTy (FunTy intTy intTy)))
equals = (mkId (mkSysLocalName 1627396023 "==") (FunTy intTy
(FunTy intTy boolTy)))

times = (mkId (mkSysLocalName 1912602967 "*") (FunTy intTy
(FunTy intTy intTy)))

equals2 = (mkId (mkSysLocalName 805306477 "==") (FunTy intTy
(FunTy intTy boolTy)))

plus = (mkId (mkSysLocalName 1912602966 "+") (FunTy intTy (FunTy intTy intTy)))
mynot = (mkId (mkSysLocalName 1912602841 "not") (FunTy boolTy boolTy))

84 APPENDIX A. HASKELL CODE

myor = (mkId (mkSysLocalName 1912602850 "||") (FunTy boolTy (FunTy boolTy boolTy)))
mynot2 = (mkId (mkSysLocalName 1912602843 "not") (FunTy boolTy boolTy))
times2 = (mkId (mkSysLocalName 1912602969 "*") (FunTy intTy (FunTy intTy intTy)))
plus2 = (mkId (mkSysLocalName 1912602968 "+") (FunTy intTy (FunTy intTy intTy)))

plus3 = (mkId (mkSysLocalName 1912602970 "+") (FunTy intTy (FunTy intTy intTy)))
append = (mkId (mkSysLocalName 805306370 "++")

(ForAllTy alpha
(FunTy listAlphaTy (FunTy listAlphaTy

listAlphaTy))))
greaterthan = (mkId (mkSysLocalName 1912602857 ">") (FunTy intTy

(FunTy intTy boolTy)))
or2 = (mkId (mkSysLocalName 1912602842 "||") (FunTy boolTy

(FunTy boolTy boolTy)))
or3 = (mkId (mkSysLocalName 1912602840 "||") (FunTy boolTy

(FunTy boolTy boolTy)))

cons1 = (mkId (mkSysLocalName (-1) "Cons")
(ForAllTy alpha
(FunTy alphaTy (FunTy listAlphaTy listAlphaTy))))

nil2 = (mkId (mkSysLocalName (-2) "Nil") (ForAllTy alpha listAlphaTy))

myand = (mkId (mkSysLocalName 1912602851 "&&") (FunTy boolTy (FunTy boolTy boolTy)))

funenv = (tableExtend
[myfoldr, mymap, minus, equals, times, equals2,

plus, mynot, myor, mynot2, times2,
plus2, plus3, append, greaterthan, or2,
or3, cons1, nil2, myand]

-- Some of these (foldr, map, cons, and nil) should have type arguments,
-- but since the interpreter ignores type arguments and applications anyway,
-- they are not specified.

[(Closure
(f,
(Lam z
(Lam l
(Case (Var l) foo
[(ConPat cons, [x, xs], (App (App (Var f) (Var x))

(App (App (App (Var myfoldr)
(Var f)) (Var z))

(Var xs)))),
(ConPat nil, [], (Var z))]))),

EmptyTable)),
(Closure (f,

(Lam l (Case (Var l) foo
[(ConPat nil, [], (Con nil [])),
(ConPat cons,
[x, xs],
(Con cons [(App (Var f) (Var x)),

(App (App (Var mymap) (Var f))
(Var xs))]))])),

EmptyTable)),
(CurriedPrim

A.7. EVAL.HS 85

((minus, (\ lst ->
(case lst of
(res:(IntRes x):(IntRes y):[]) -> (IntRes (x - y))
_ -> error $ "minus applied to wrong arg type, namely "

++ (showResult (ListRes lst))))), 3, [])),
equalsDef,

timesDef,
equalsDef2,

(CurriedPrim
((plus, (\ lst ->
(case lst of
(res:(IntRes x):(IntRes y):[]) -> (IntRes (x + y))
_ -> error $ "plus applied to wrong arg type, namely "

++ (showResult (ListRes lst))))), 3, [])),
(CurriedPrim
((mynot, (\ lst ->

(case lst of
((BoolRes x):[]) -> (BoolRes (not x))

_ -> error "not applied to wrong arg type"))), 1, [])),
(CurriedPrim

((myor, (\ lst ->
(case lst of
((BoolRes x):(BoolRes y):[]) -> (BoolRes (x || y))
_ -> error $ "or applied to wrong arg type, namely "

++ (showResult (ListRes lst))))), 2, [])),
(CurriedPrim
((mynot2, (\ lst ->

(case lst of
((BoolRes x):[]) -> (BoolRes (not x))

_ -> error "not applied to wrong arg type"))), 1, [])),
(CurriedPrim
((times2, (\ lst ->

(case lst of
(res:(IntRes x):(IntRes y):[]) -> (IntRes (x * y))

_ -> error $ "* applied to wrong arg type, namely "
++ (showResult (ListRes lst))))), 3, [])),

(CurriedPrim
((plus2, (\ lst ->
(case lst of
(res:(IntRes x):(IntRes y):[]) -> (IntRes (x + y))
_ -> error $ "plus applied to wrong arg type, namely "

++ (showResult (ListRes lst))))), 3, [])),
(CurriedPrim
((plus3, (\ lst ->

(case lst of
(res:(IntRes x):(IntRes y):[]) -> (IntRes (x + y))
_ -> error $ "plus applied to wrong arg type, namely "

++ (showResult (ListRes lst))))), 3, [])),
(CurriedPrim
((append, (\ lst ->

(case lst of
((ListRes l1):(ListRes l2):[]) -> (ListRes (l1 ++ l2))
_ -> error "++ applied to wrong arg type"))), 2, [])),

86 APPENDIX A. HASKELL CODE

(CurriedPrim
((greaterthan, (\ lst ->
(case lst of
(res:(IntRes x):(IntRes y):[]) -> (BoolRes (x > y))
_ -> error "> applied to wrong arg type"))), 3, [])),

(CurriedPrim
((or2, (\ lst ->
(case lst of
((BoolRes x):(BoolRes y):[]) -> (BoolRes (x || y))
_ -> error $ "or applied to wrong arg type, namely "

++ (showResult (ListRes lst))))), 2, [])),
(CurriedPrim
((or3, (\ lst ->
(case lst of
((BoolRes x):(BoolRes y):[]) -> (BoolRes (x || y))
_ -> error $ "or applied to wrong arg type, namely " ++

(showResult (ListRes lst))))), 2, [])),
(CurriedPrim
((cons1, (\ lst ->

(case lst of
(x:(tl@(ListRes l)):[]) -> (listresCons x [tl])
_ -> error "Cons applied to wrong arg type"))), 2, [])),

(ListRes []),
(CurriedPrim
((myand, (\ lst ->

(case lst of
((BoolRes x):(BoolRes y):[]) -> (BoolRes (x && y))
_ -> error "&& applied to wrong arg type"))), 2, []))]

EmptyTable)

equalsDef = (CurriedPrim
((equals, (\ lst ->

(case lst of
((IntRes x):(IntRes y):[]) -> (BoolRes (x == y))
_ -> error $ "equals applied to wrong arg type, namely " ++ (showListRes lst)))),

2, []))

equalsDef2 = (CurriedPrim
((equals2, (\ lst ->

(case lst of
(res:(IntRes x):(IntRes y):[]) -> (BoolRes (x == y))
_ -> error "equals applied to wrong arg type (Def2)"))),

3, []))

timesDef = (CurriedPrim
((times,

(\ lst ->
(case lst of

(res:(IntRes x):(IntRes y):[]) -> (IntRes (x * y))
_ -> error $ "*1912602967 applied to wrong arg type, namely "

++ (showResult (ListRes lst))))), 3, []))

------------- junk that GHC dumps in -------------------------

A.8. TABLE.HS 87

fnumint = (mkId (mkSysLocalName 1912603492 "$fNumInt") (FunTy intTy intTy))
fromint = (mkId (mkSysLocalName 805306469 "fromInt") (FunTy intTy intTy))
isharp = (mkId (mkSysLocalName 905969676 "I#") (FunTy intTy intTy))
fnuminteger = (mkId (mkSysLocalName 1912603535 "$fNumInteger") intTy)
dnum = (mkId (mkSysLocalName 1627396004 "$dNum") (FunTy intTy intTy))
csharp = (mkId (mkSysLocalName 905969667 "$wC#") (FunTy charTy charTy))
feqint = (mkId (mkSysLocalName 1912603385 "$fEqInt") (FunTy intTy intTy))
fordint = (mkId (mkSysLocalName 1912603311 "$fOrdInt") (FunTy intTy intTy))
fintegralint = (mkId (mkSysLocalName 1912604395 "$fIntegralInt")
(FunTy intTy intTy))

specialenv = (tableExtend [feqint, fnumint, fromint, fnuminteger,
dnum, csharp, fordint, fintegralint, isharp]

(take 9 (repeat idClosure))
EmptyTable)

idClosure = (Closure (x, (Var x), EmptyTable))

A.8 Table.hs

-- implements a table as a list of pairs
-- By Kirsten Chevalier
module Table

where

import List
import Core(Var, varName, n_occ)
import PrettyCore

data Show b => Table b = T [(Var, b)] | EmptyTable

table :: Table b -> [(Var, b)]
table (T t) = t
table EmptyTable = []
toTable :: Show b => [(Var, b)] -> Table b
toTable [] = EmptyTable
toTable t = T t

tableLookup :: Var -> Table b -> Maybe b
tableLookup v t = let findRes = (find (\ (vr, ty) -> (vr == v)) (table t))

in
(case findRes of
Nothing -> Nothing
Just(_, res) -> Just(res))

tableLookupString :: Var -> Table b -> Maybe b
tableLookupString v t = let findRes = (find (\ (vr, ty) ->

((n_occ(varName vr)) == (n_occ(varName v))))
(table t))

in
(case findRes of
Nothing -> Nothing

88 APPENDIX A. HASKELL CODE

Just(_, res) -> Just(res))

-- if a value is inserted that is already in the table, remove the previous value

tableInsert :: (Show b) => Var -> b -> Table b -> Table b
tableInsert v ty t = (toTable ((v, ty):(filter (\ (var, typ) -> (var /= v))
(table t))))

tableExtend :: (Show b) => [Var] -> [b] -> Table b -> Table b
tableExtend vs tys t = (foldr (\ (v, ty) rest -> (tableInsert v ty rest))
t
(zip vs tys))

tableDelete :: (Show b) => Var -> Table b -> Table b
tableDelete v t = (toTable (filter (\ (vr, ty) -> (vr /= v)) (table t)))

showTable :: (Show b) => Table b -> String
showTable binds = ("---BEGIN ENV------\n" ++

(foldr
(\ (var, expr) rest ->
(pretty var) ++ " = " ++ (show expr) ++ "\n" ++ rest)

""
(table binds)) ++

"---END ENV--------\n")

tableMerge :: (Show b) => [Table b] -> Table b
tableMerge tables = (toTable (remDups (concat (map table tables))))

remDups :: [(Var, b)] -> [(Var, b)]
remDups pairs = (foldr (\ p@(var, ty) rest ->
(case (find (\ (v,_) -> (v == var)) rest) of
Just _ -> rest
Nothing -> p:rest))
[]
pairs)

A.9 Result.hs

-- provides Result type, representing the result of an evaluation
-- By Kirsten Chevalier
module Result
where

import Core
import PrettyCore
import Table

type Env = Table Result

A.9. RESULT.HS 89

data Result =
IntRes Integer

| CharRes Char
| ListRes [Result]
| BoolRes Bool
| TupleRes (Result, Result)

-- (\ v -> expr), defined in <env>, is represented as
-- Closure(v, expr, <env>)
| Closure (Var, CoreExpr, Env)
| CurriedPrim (Primop, Int, [Result])
| ExprRes (CoreExpr, Env)

instance Show Result where
show r = showResult r

instance Eq Result where
(IntRes i) == (IntRes j) = i == j
(CharRes c1) == (CharRes c2) = c1 == c2
(ListRes l1) == (ListRes l2) = l1 == l2
(BoolRes b1) == (BoolRes b2) = b1 == b2
(TupleRes t1) == (TupleRes t2) = t1 == t2

-- should this really check whether the environments are the same, too?
-- Probably. It’s also probably wrong anyway.

(Closure (v1, body1, _)) == (Closure (v2, body2, _)) = (v1 == v2)
&& (cheapEqExpr body1 body2)

(CurriedPrim ((nm1, _), _, _)) == (CurriedPrim ((nm2, _), _, _)) = nm2 == nm1
(ExprRes (e1, _)) == (ExprRes (e2, _)) = (cheapEqExpr e1 e2)
_ == _ = False

type Primop = (Var, [Result] -> Result)

showResult :: Result -> String
showResult (IntRes i) = (show i)
showResult (CharRes c) = (show c)
showResult (ListRes []) = "[]"
showResult (ListRes l) = ("[" ++ (showListRes l) ++ "]")
showResult (BoolRes b) = (show b)
showResult (TupleRes (res1,res2)) =

("(" ++ (showResult res1) ++ " , " ++ (showResult res2) ++ ")")
showResult (Closure (v, exp, env)) = (showClosure (Lam v exp) env)
showResult (CurriedPrim ((primopId, _), _, args)) =

("primop: (" ++ (pretty primopId) ++ " " ++
(showResult (ListRes args)) ++ ")")

showResult (ExprRes (expr, env)) = (showClosure expr env)

showClosure exp env = ((toString exp) ++ "\n env = " ++ (showTable env))

showListRes l = ((concat ((map (\ x -> ((showResult x) ++ ", "))
(take ((length l) - 1) l))) ++ showResult (last l)))

toString expr = (pretty expr)

90 APPENDIX A. HASKELL CODE

A.10 F2Haskell.hs

-- F to Haskell translator
-- By Kirsten Chevalier
module F2Haskell
where

import Core
import PrettyCore
import Eval
import ThisUnique
import ThisUtil
import Table
import Result

first :: [a] -> a
first (x:xs) = x

second :: [a] -> a
second (x:(y:xs)) = y

parens :: String -> String
parens s = "(" ++ s ++ ")"

curlies :: String -> String
curlies s = "{" ++ s ++ "}"

sep :: String -> String -> String -> String
sep separator firstString secondString =

firstString ++ separator ++ secondString

var2String :: Var -> String
var2String var = (case (preludeLookup var) of

-- for Prelude functions, don’t print the unique
Just str -> str
Nothing -> (pretty var))

-- given an F expression, returns a string representing the corresponding
-- Haskell program
f2haskell :: CoreExpr -> String

f2haskell (Let binds body) = "main = " ++ (f2haskell’ body) ++ "\n\n" ++
(concat (convertBinds binds))

f2haskell _ = error $ "f2haskell: Let expected"

f2haskell’ (Var v) = var2String v
f2haskell’ (Lit (MachChar c)) = "’" ++ [c] ++ "’"
f2haskell’ (Lit (MachInt i)) = (show i)
f2haskell’ (Con con args) = (if (con == cons) then

(parens (sep ":"
(f2haskell’ (first args’))
(f2haskell’ (second args’))))

else if (con == nil) then

A.10. F2HASKELL.HS 91

"[]"
else if (con == tuple) then
(parens (sep ","
(f2haskell’ (first args’))
(f2haskell’ (second args’))))

else if ((con == true) || (con == true’)) then
"True"
else if ((con == false) || (con == false’)) then
"False"
else if ((getUnique con) ==
(varUnique isharp)) then

(f2haskell’ (first args’))
else
error $ "bad constructor" ++ (pretty con))

where (_, args’) = span isTypeArg args
f2haskell’ (App fun (Type _)) = (f2haskell’ fun)
f2haskell’ (App fun arg) = (parens (sep " "

(f2haskell’ fun)
(f2haskell’ arg)))

f2haskell’ (Lam var body) = (case (idType var) of
(TyConApp Kind _) -> (f2haskell’ body)
_ -> (parens ("\\ " ++ (sep " -> "
(var2String var)
(f2haskell’ body)))))

f2haskell’ (Let binds expr) =
(parens (case flat of
[] -> (f2haskell’ expr)
_ -> (sep "in "

("let " ++
(curlies
(concat

((map (bind2haskell True)
(allbutlast flat))

++ [(bind2haskell False (last flat))]))))
(f2haskell’ expr))))

where flat = flattenBinds binds
f2haskell’ (Case expr _ alts) =

(parens ("case " ++ (f2haskell’ expr) ++ " of\n"
++ (concat ((map

(alt2haskell True)
(allbutlast alts)) ++

[(alt2haskell False (last alts))]))))
f2haskell’ (Type ty) = (type2haskell ty) -- this shouldn’t be necessary

bind2haskell :: Bool -> (Var, CoreExpr) -> String
bind2haskell semi (var, expr) = ((sep " = "
(var2String var)
(f2haskell’ expr)) ++
(if semi then
";\n"
else
"\n\n"))

92 APPENDIX A. HASKELL CODE

alt2haskell :: Bool -> (Pat, [Var], CoreExpr) -> String
alt2haskell newline (pat, vars, expr) =

((sep " -> "
(pat2string pat vars)
(f2haskell’ expr)) ++ (if newline then

"\n"
else
""))

pat2string :: Pat -> [Var] -> String
pat2string (ConPat con) vars = (f2haskell’ (Con con (map Var vars)))
pat2string (LitPat lit) _ = (f2haskell’ (Lit lit))
pat2string DEFAULT _ = "_"

type2haskell :: Type -> String
type2haskell (ForAllTy tyvar ty) = type2haskell ty
type2haskell (FunTy ty1 ty2) = (sep " -> "
(type2haskell ty1)
(type2haskell ty2))
type2haskell (TyConApp tc tys) = (parens (sep " "

(show tc)
(concat (map (\ s -> s ++ " ")
(map type2haskell tys)))))

type2haskell (TyVarTy v) = (var2String v)

convertBinds binds = (map (bind2haskell False) (removeGarbage (flattenBinds binds)))

allbutlast l = (take ((length l) - 1) l)

removeGarbage binds = (filter (\ (var, expr) ->
((not (containsDollarSign (Var var))) &&
(not (isDuplicate (Var var)))))

binds)

containsDollarSign (Var v) = (first (n_occ (varName v))) == ’$’
containsDollarSign expr = mapExprBool containsDollarSign expr

isDuplicate (Var v) = (case (preludeLookup v) of
Just _ -> True
Nothing -> False)

preludeLookup :: Var -> Maybe(String)
preludeLookup var = (case (tableLookupString var preludeFuns) of

Just (ListRes s) -> (Just (resToString s))
Nothing -> (case (tableLookupString var specialenv) of

Just _ -> Just "id"
Nothing -> Nothing))

preludeFuns = (tableExtend
[myfoldr, mymap, minus, equals, times,
plus, myor, append, greaterthan,
mynot, myand, cons1, nil2]

(map (\ l -> (ListRes (map CharRes l)))

A.11. TYPEINFERENCE.HS 93

["foldr", "map", "(-)", "(==)", "(*)",
"(+)", "(||)", "(++)", "(>)", "not",
"(&&)", "(:)", "[]"])

EmptyTable)

resToString chars = (map (\ (CharRes c) -> c) chars)

A.11 TypeInference.hs

-- The main list abstraction algorithm
-- By Olaf Chitil, with minor changes by Kirsten Chevalier
module TypeInference where

import IOExts (IORef, newIORef, readIORef, writeIORef)
import Monad(MonadPlus(..),guard,msum,filterM,liftM)
import MonadTransformer
import ThisUnique
import Core
import ThisUtil
import List ((\\))
import Maybe(isJust, fromJust, fromMaybe)
import IOExts(unsafePerformIO)
import PrettyCore
import CountIO
import Build

{-
The Type inference monad
- for keeping track of continously modified types
- may fail
-}

noFailTIM :: TIM a -> IO a
noFailTIM (MT m) = do justx <- m; return (fromJust justx)

{-
functions for creating new type variables and reading and writing them
in the monad
-}

-- newTITyVar :: IO Type
-- newTITyVar = do
-- tyVar <- newMutTyVar (mkSysLocalName 0 "t") (TyConApp Kind [])
-- return $ TyVarTy tyVar

newTITyVar :: CountIO Type
newTITyVar = do

count <- getCounter
tyVar <- lift $ newMutTyVar (mkSysLocalName count "t") (TyConApp Kind [])
incCounter
return $ TyVarTy tyVar

94 APPENDIX A. HASKELL CODE

readTITyVar :: TyVar -> IO (Maybe Type)
readTITyVar = readMutTyVar

writeTITyVar :: TyVar -> Type -> IO ()
writeTITyVar tyvar ty = writeMutTyVar tyvar (Just ty)

sameTITyVar :: TyVar -> TyVar -> Bool
sameTITyVar VarG{varDetails=MutTyVar ref1 _} VarG{varDetails=MutTyVar ref2 _} =

ref1 == ref2

{-
The actual type inference algorithm for the simply typed language
-}

tyInfer :: CoreExpr -> Type -> TIMC ()

tyInfer (Lit lit) ty = do
tim2timc (unify (litType lit) ty)

tyInfer (Var id) ty = do
tim2timc (unify (idType id) ty)

tyInfer (Con con args) ty = do
let (tyArgs,exprArgs) = span isTypeArg args

tys = map (\(Type ty) -> ty) tyArgs
exprArgTypes <- sequence (map tyInferArg exprArgs)
tim2timc ((unify (applyTys (conType con) tys)

(foldr mkFunTy ty exprArgTypes)))
where
tyInferArg :: CoreExpr -> TIMC (Type)
tyInferArg expr = do

tyVar <- lift newTITyVar
tyInfer expr tyVar
return tyVar

tyInfer a@(App fun (Type argTy)) ty = do
tyVar <- lift newTITyVar
tyInfer fun tyVar
forAllTy <- io2timc $ elimTypeBounds tyVar
tim2timc (unify ty (applyTy forAllTy argTy))

tyInfer a@(App (App (Var id) (Type argTy)) arg) ty =
-- Special case for build
(if (id == buildId) then do

tim2timc (unify (TyConApp List [argTy]) ty)
tyInfer arg (ForAllTy beta (FunTy (FunTy argTy (FunTy betaTy betaTy))

(FunTy betaTy betaTy)))
else
tyInferApp a ty)

tyInfer a@(App fun arg) ty = tyInferApp a ty
tyInfer (Lam var expr) ty = do

tyVar <- lift newTITyVar
if isTyVar var then
tim2timc (unify (ForAllTy var tyVar) ty)
else -- id is term variable
tim2timc (unify (mkFunTy (idType var) tyVar) ty)

A.11. TYPEINFERENCE.HS 95

tyInfer expr tyVar
tyInfer (Let (NonRec id expr) body) ty = do

tyInfer body ty
tyInfer expr (idType id)

tyInfer (Let (Rec binds) body) ty = do
tyInfer body ty
mapM_ (\(id,expr) -> tyInfer expr (idType id)) binds

tyInfer (Case expr id alts) ty = do
tyInfer expr scrutineeTy
tyVars <- lift $ sequence $ replicate numOfTyVars newTITyVar
--- mapM_ :: Monad m => (a -> m b) -> [a] -> m () -- from Prelude
mapM_ (tyInferAlt tyVars) alts
where
scrutineeTy = idType id
numOfTyVars

| null alts = 0
| otherwise =

length $ fst $ splitForAllTys $ patType $ (\(c,_,_) -> c) $ head alts
tyInferAlt tyVars (pat, ids, expr) = do

tim2timc (unify (applyTys (patType pat) tyVars)
(foldr mkFunTy scrutineeTy $ map idType ids))

tyInfer expr ty
return ()

tyInferApp (App fun arg) ty =
do -- argument is term expression, not type

tyVar <- lift newTITyVar
tyInfer fun (mkFunTy tyVar ty)
tyInfer arg tyVar

{-
Unfication of types
WITHOUT OCCUR CHECK! (have to prove that it is not necessary)
Note that only flexiTyVars can be bound,
the others (TyVar) are handled like constants.

Strange results for some inputs (d type inference variable):
unify (forall b. d -> d) (forall a. a -> d) = forall b. a -> a
Such inputs do not occure here.
-}

unify :: Type -> Type -> TIM ()

unify type1 type2 =
let

ty1 = unsafePerformIO (elimTypeTyVars type1)
ty2 = unsafePerformIO (elimTypeTyVars type2)

in
unify emptyUFM type1 type2

where
-- Use finite map to implement comparison modulo alpha conversion
-- for forall bound type variables
unify :: UniqFM (TyVar) -> Type -> Type -> TIM ()

96 APPENDIX A. HASKELL CODE

unify alpha f1@(FunTy arg1 res1) f2@(FunTy arg2 res2) = do
unify alpha arg1 arg2
unify alpha res1 res2

unify alpha (TyConApp tycon1 args1) (TyConApp tycon2 args2) = do
guard (tycon1 == tycon2) -- then also length args1 == length args2
sequence_ (zipWith (unify alpha) args1 args2)

unify alpha t@(TyVarTy tyVar1) type2 | isMutTyVar tyVar1 = do
contTyVar1 <- lift $ readTITyVar tyVar1
case contTyVar1 of

Nothing -> lift $ bindTyVar tyVar1 type2
Just type1 -> unify alpha type1 type2

unify alpha type1 t@(TyVarTy tyVar2) | isMutTyVar tyVar2 = do
content <- lift $ readTITyVar tyVar2
case content of
Nothing -> lift $ writeTITyVar tyVar2 type1
Just type2 -> unify alpha type1 type2

unify alpha t1@(TyVarTy tyVar1) t2@(TyVarTy tyVar2) = -- both non-mutable tyvars
guard (fromMaybe tyVar1 (lookupUFM alpha tyVar1) == tyVar2)

unify alpha (ForAllTy tyVar1 ty1) (ForAllTy tyVar2 ty2) =
unify (addToUFM alpha tyVar1 tyVar2) ty1 ty2

unify alpha type1 type2 = error ("Unification failed: " ++ show (ppr False type1)
++ " : " ++ show (ppr False type2))

{-
Unification of an unbound type variable with a type always succeeds,
but have to take care not to create a cyclic structure.
Also avoid chains of type variables as far as easily achievable.
-}

bindTyVar :: TyVar -> Type -> IO ()

bindTyVar tyVar1 type2@(TyVarTy tyVar2) | isMutTyVar tyVar2 = do
contTyVar2 <- readTITyVar tyVar2
case contTyVar2 of

Nothing ->
if sameTITyVar tyVar1 tyVar2 then
return () -- don’t create a cycle

else
writeTITyVar tyVar1 type2

Just contTy2 -> bindTyVar tyVar1 contTy2 -- no unneccessary chains
bindTyVar tyVar1 type2 = writeTITyVar tyVar1 type2

{-
Monads for analysing a producer and inlining binding.
Uses type inference and may fail any time, hence requires TIM
Furthermore threads set of all used inlineable ids.
-}

type InlineEnv = UniqFM CoreExpr -- body of an inlineable id
type InInst = UniqFM Id -- instance id of an id
type InstEnv = UniqFM (CoreExpr, CoreExpr, Id)

-- (original expr, renamed body, instance id)

A.11. TYPEINFERENCE.HS 97

type AnM a = StateT (InInst, InstEnv, UniqSupply) (MaybeT IO) a
-- TIM

type InM a = StateT (InInst, InstEnv, UniqSupply) IO a

type ConsToPlaceholders = Unique -> Maybe (Type -> CoreExpr)
type PlaceholdersToCons = Id -> IO (Maybe (CoreExpr))

{-
Perform analysis of an expression.
Needs bindings which may be inlined.
-}

analyse :: ConsToPlaceholders -> Type -> InlineEnv
-> CoreExpr -> Type -> AnM CoreExpr

analyse consToPlaceholders tyToRemove inlineEnv
expr desiredType = do

(newInstEnv, instExpr) <- liftInside $
instantiate inlineEnv tyToRemove expr

(_,oldInstEnv,_) <- readState
((instEnv, tyVarExpr), cnt) <- lift $ lift $

(runCounterWith
(replaceExprTypes tyToRemove oldInstEnv newInstEnv instExpr) 0)

updateState (\(inInst,_,us)->(inInst,instEnv,us))
(placeholderTyVarExpr, cnt1) <- lift $ lift $

(runCounterWith
(replaceConstructors consToPlaceholders tyToRemoveArgs tyVarExpr) cnt)

(res, cnt2) <- lift $ lift $ runCounterWith
(runMaybeT $ (tyInfer placeholderTyVarExpr desiredType)) cnt1
return placeholderTyVarExpr

where
tyToRemoveArgs =

case tyToRemove of
TyConApp tcon targs -> targs
otherwise ->

error $ "TypeInference.analyse: tyToRemove is " ++
pretty tyToRemove ++
", tyConApp expected"

{-
Apply monadic function repeatedly until test returns True
-}

untilM :: Monad m => (a -> Bool) -> (a -> m a) -> m a -> m a
untilM test f start = do

x <- start
if test x then

return x
else
untilM test f (f x)

{-

98 APPENDIX A. HASKELL CODE

Determine and analyse all bindings which need to be inlined
according to the given test function.
Needs all bindings which may be inlined.
-}

inline :: ConsToPlaceholders -> Type -> InlineEnv -> (CoreBndr -> IO Bool)
-> AnM [(CoreBndr, CoreExpr)]

inline consToPlaceholder typeToRemove inlineEnv hasToBeInlined = do
(inlinedIds, inlinedExprs, _) <-

untilM (null . thrd3) inlineOnce (liftInside start)
return (zip inlinedIds inlinedExprs)
where
start :: InM ([CoreBndr], [CoreExpr], [CoreBndr])
start = do
idsToBeInlined <- detIdsToBeInlined hasToBeInlined []
return ([], [], idsToBeInlined)

-- extend inlined bindings by those given in the 3rd component
-- and determine list of ids which need to be inlined next
inlineOnce :: ([CoreBndr], [CoreExpr], [CoreBndr])

-> AnM ([CoreBndr], [CoreExpr], [CoreBndr])
inlineOnce (inlinedIds, inlinedExprs, idsNextToBeInlined) = do

newInlinedExprs <-
analyseIds consToPlaceholder typeToRemove inlineEnv idsNextToBeInlined

newIdsNextToBeInlined <-
liftInside $ detIdsToBeInlined hasToBeInlined allInlinedIds

return (allInlinedIds
, newInlinedExprs ++ inlinedExprs
, newIdsNextToBeInlined)

where
allInlinedIds = idsNextToBeInlined ++ inlinedIds

-- analyse expressions which are bound to the given ids
analyseIds :: ConsToPlaceholders -> Type -> InlineEnv

-> [CoreBndr] -> AnM [CoreExpr]
analyseIds consToPlaceholder typeToRemove inlineEnv idsToBeInlined = do
(_, instEnv, _) <- readState
let exprsToBeInlined = map (snd3 . fromJust . lookupUFM instEnv)

idsToBeInlined
sequence $ zipWith (analyse consToPlaceholder typeToRemove inlineEnv)
exprsToBeInlined (map idType idsToBeInlined)

-- determine which of the given ids need to be inlined
detIdsToBeInlined :: (CoreBndr -> IO Bool)

-> [CoreBndr] -> InM [CoreBndr]

detIdsToBeInlined hasToBeInlined alreadyInlined = do
(_, instEnv, _) <- readState
tobeInlinedIds <- lift $

filterM hasToBeInlined $ map thrd3 $ eltsUFM instEnv
return (tobeInlinedIds \\ alreadyInlined)

A.11. TYPEINFERENCE.HS 99

{-
Test if a unique occurs as type variable unique
-}

occursInTIBndr :: Unique -> CoreBndr -> IO Bool

occursInTIBndr unique id = do
let ty = varType id
ty’ <- elimTypeTyVars ty
return (occursInType unique ty’)

occursInType :: Unique -> Type -> Bool

occursInType unique (TyVarTy tyVar) = unique == realUnique tyVar
occursInType unique (TyConApp _ args) = any (occursInType unique) args
occursInType unique (FunTy arg res) =

occursInType unique res || occursInType unique arg -- try result first
occursInType unique (ForAllTy var body) = occursInType unique body

{-
Try to convert an expression of type list into build form.
Needs bindings whose’ types contain lists and which may be inlined.
-}

typeOf :: CoreExpr -> Type
typeOf (Lit (MachInt x)) = (TyConApp Int [])
typeOf (Lit (MachChar x)) = (TyConApp Char [])
typeOf (Var id) = (last (getTypes (idType id)))
typeOf (Con con args) = mkFunTys (drop 1 resTy) (last resTy)

where
(tyArgs, exprArgs) = span isTypeArg args

tys = map (\ (Type ty) -> ty) tyArgs
conTy = (applyTys (conType con) tys)
resTy = (drop ((length args) - 1) (getTypes conTy))

typeOf (App fun (Type argTy)) = (applyTy (typeOf fun) argTy)
typeOf (App fun arg) = mkFunTys (drop 2 funTy) (last funTy)

where
funTy = (getTypes (typeOf fun))

typeOf (Lam var expr) = (typeOf expr)
typeOf (Let _ body) = (typeOf body)
typeOf (Case expr id (a:as)) = case a of

(con, args, exp) -> (typeOf exp)
typeOf foo = error ("typeOf: " ++ (pretty foo))

-- given t_0 -> t_1 -> ... -> t_n, returns [t_0, t_1, ... , t_n]
-- does the same for (forall t_0 (forall t_1 ...))
getTypes :: Type -> [Type]
getTypes (FunTy arg res) = arg:(getTypes res)
getTypes x = [x]

-- Made this a global definition and not a local one, so we can use

100 APPENDIX A. HASKELL CODE

-- it in Examples
buildTyVar = VarG{ varName = Named "build" 101

, varType = TyConApp Kind []
, realUnique = 101, varDetails = TyVar {-Build typeToRemove-}}

nilPlaceholderUnique = 3
consPlaceholderUnique = 4

buildListBuild :: UniqSupply -> InlineEnv -> CoreExpr -> IO (Maybe CoreExpr)

buildListBuild us ie ce = do
(buildBuild typeToRemove buildTyVar consToPlaceholders placeholdersToCons us ie ce)
where
typeToRemove = (typeOf ce)
typeToRemoveUnlisted = (case typeToRemove of
(TyConApp List [x]) -> x
ty -> ty)

consToPlaceholders = lookupUFM_Directly consToPlaceholdersUFM
consToPlaceholdersUFM = listToUFM

[(nilDataConKey, \ty -> Var (mkSysLocal "n" nilPlaceholderUnique ty))
, (consDataConKey, \ty -> Var (mkSysLocal "c" consPlaceholderUnique

(FunTy typeToRemoveUnlisted (FunTy ty ty))))
]

placeholdersToCons id =
case lookupUFM placeholdersToConsUFM id of

Just cons -> do
test <- hasBuildTyVar id
return $ if test then Nothing else Just cons

Nothing -> return Nothing

placeholdersToConsUFM = listToUFM
[(nilPlaceholderUnique, mkApps (Var nilId) [Type typeToRemoveUnlisted])
, (consPlaceholderUnique, mkApps (Var consId) [Type typeToRemoveUnlisted])
]

nilId = mkVanillaId nilName (dataConType $ C nilName)
consId = mkVanillaId consName (dataConType $ C consName)
nilName = Named{n_occ="Nil", n_uniq=nilDataConKey}
consName = Named{n_occ="Cons", n_uniq=consDataConKey}
hasBuildTyVar :: CoreBndr -> IO Bool
hasBuildTyVar = occursInTIBndr (getUnique buildTyVar)
boolTy = TyConApp Bool []

{-
Build inference with inlining.
Analyse an expression and inline bindings when necessary.
Needs bindings which may be inlined.
-}

buildBuild :: Type -> TyVar
-> ConsToPlaceholders
-> PlaceholdersToCons
-> UniqSupply
-> InlineEnv -> CoreExpr -> IO (Maybe CoreExpr)

A.11. TYPEINFERENCE.HS 101

buildBuild typeToRemove buildTyVar consToPlaceholder placeholdersToCons
uniqSupply inlineEnv expr = runMaybeT $ do

((_, finalInstEnv,_) , analysedExpr) <- runStateMT (do
analysedExpr <-

analyse consToPlaceholder typeToRemove inlineEnv expr newType
analysedBinds <-
inline consToPlaceholder typeToRemove inlineEnv hasToBeInlined

return $ Let (Rec analysedBinds) analysedExpr
)
(emptyUFM, emptyUFM, uniqSupply)

analExprForOutput <- lift $ elimExprTyVars analysedExpr
polyTyExpr <- lift $ reInsertConstructors placeholdersToCons analysedExpr
polyTyExpr2 <- lift $ elimExprBoundTyVars typeToRemove polyTyExpr
-- replace all type inference variables which still occur by the
-- type of the intermediate data structure
let polyTyExpr3 = uninstantiate finalInstEnv buildTyVar polyTyExpr2
return polyTyExpr3
where
hasToBeInlined = occursInTIBndr buildTyVarUnique
buildTyVarUnique = getUnique buildTyVar
newType = TyVarTy buildTyVar

{-
Replaces every list type by a new type variable in the types of all
term identifiers which are locally bound or are externally bound
and can be inlined so that they can be converted as well.
(e.g. no data constructors or canonical identifiers of data constructors)

Hence the transformation needs a set of possibly convertible
external term identifiers.

Besides the term with replaced list types the transformation returns
a set of modified external identifiers. These are those external identifiers
which occur in the input term and who’s list types were replaced.

List type replacement takes only place at a binding occurrence or
in the set of external identifiers.
At all other occurrences an identifier is replaced by its respective
binding occurrence (comparison by unique), so all occurrences are shared.

Assume that the type to be replaced has an algebraic data type constructor
at the top (no function type or type variable).

The algorithm threads a set of external term identifiers who’s types
have been modified.
-}

replaceExprTypes ::
Type -> InstEnv -> InstEnv -> CoreExpr -> CountIO (InstEnv, CoreExpr)

replaceExprTypes typeToReplace oldInstEnv newInstEnv expr = do

102 APPENDIX A. HASKELL CODE

let (orgUniqs, instInfs) = unzip $ ufmToList newInstEnv
(olds, bodies, ids) = unzip3 instInfs

repIds <- mapM (replaceIdTypes typeToReplace) ids
let instEnv = addListToUFM oldInstEnv $ zip orgUniqs $

zip3 olds bodies repIds
repExpr <- rep instEnv expr
return (instEnv, repExpr)
where
rep :: InstEnv -> CoreExpr -> CountIO CoreExpr
rep instEnv expr = replace emptyUniqSet expr
where
replace :: UniqSet Id -> CoreExpr -> CountIO CoreExpr
-- the environment stores the locally bound term variables
-- it is only passed downwards
replace env expr@(Var id) =

case lookupUniqSet env id ‘mplus‘
fmap (\(_,_,x)->x) (lookupUFM instEnv id) of

Just repId -> return (Var repId)
Nothing -> return expr

replace env (Lam id body) = do
repId <- replaceIdTypes typeToReplace id
repBody <- replace (addOneToUniqSet env repId) body
return (Lam repId repBody)

replace env (Let (NonRec id body) expr) = do
repBody <- replace env body
repId <- replaceIdTypes typeToReplace id
repExpr <- replace (addOneToUniqSet env repId) expr
return (Let (NonRec repId repBody) repExpr)

replace env (Let (Rec binds) expr) = do
let (ids,bodies) = unzip binds
repIds <- mapM (replaceIdTypes typeToReplace) ids
let newEnv = addListToUniqSet env repIds
repBodies <- mapM (replace newEnv) bodies
repExpr <- replace newEnv expr
return (Let (Rec (zip repIds repBodies)) repExpr)

replace env (Case expr id alts) = do
repExpr <- replace env expr
repId <- replaceIdTypes typeToReplace id
let newEnv = addOneToUniqSet env repId

replaceAlt (con, ids, expr) = do
repIds <- mapM (replaceIdTypes typeToReplace) ids
newExpr <- replace (addListToUniqSet newEnv repIds) expr
return (con, repIds, newExpr)

repAlts <- mapM replaceAlt alts
return (Case repExpr repId repAlts)

replace env (Type ty) = do
repTy <- (replaceTypeTypes typeToReplace ty)
return (Type repTy)

replace env expr = mapExprExprM (replace env) expr -- Con, App

-- replace every occurrence of the given type by a new type variable
-- in an id
replaceIdTypes :: Type -> Id -> CountIO Id

A.11. TYPEINFERENCE.HS 103

replaceIdTypes ty = mapVarM (replaceTypeTypes ty)

{-
replace every occurrence of the given type
by a new type variable in a type
the given type is always an algebraic type and may only contain
type variables which are global to the inspected type, i.e. no
locally bound variables
-}
replaceTypeTypes :: Type -> Type -> CountIO Type

replaceTypeTypes _ ty@(TyVarTy tyVar) = return ty
replaceTypeTypes tyToReplace ty@(TyConApp tyCon args)
-- no equivalence modulo alpha conversion needed here

| ty == tyToReplace = newTITyVar
| otherwise = do

repArgs <- mapM (replaceTypeTypes tyToReplace) args
return (TyConApp tyCon repArgs)

replaceTypeTypes tyToReplace (FunTy arg res) = do
replaceArg <- replaceTypeTypes tyToReplace arg
replaceRes <- replaceTypeTypes tyToReplace res
return (FunTy replaceArg replaceRes)

replaceTypeTypes tyToReplace (ForAllTy var body) = do
replaceBody <- replaceTypeTypes tyToReplace body
return (ForAllTy var replaceBody)

{-
Eliminate bound type inference variables in a type, i.e.:
- replace bound type variables by the type they are bound to
-}

elimTypeBounds :: Type -> IO Type

elimTypeBounds tyExpr@(TyVarTy tyVar)
| isMutTyVar tyVar = do
content <- readTITyVar tyVar
case content of

Nothing -> return tyExpr
Just ty -> elimTypeBounds ty

| otherwise = return tyExpr
elimTypeBounds ty = mapTypeTypeM elimTypeBounds ty

-- note that there are no forall bound type inference variables

{-
Eliminate the type inference variables in an expression, i.e.:
- replace bound type variables by the type they are bound to
- replace FlexiTyVars by TyVars with same Unique
-}

elimExprTyVars :: CoreExpr -> IO CoreExpr

104 APPENDIX A. HASKELL CODE

elimExprTyVars = mapExprTyM elimTypeTyVars

elimTypeTyVars :: Type -> IO Type

elimTypeTyVars ty@(TyVarTy tyVar)
| isMutTyVar tyVar = do

content <- readTITyVar tyVar
case content of

Nothing -> return (TyVarTy (makeTyVarImmutable tyVar))
Just ty -> elimTypeTyVars ty

| otherwise = return ty
elimTypeTyVars (ForAllTy tyVar body) = do

elimBody <- elimTypeTyVars body
return $ ForAllTy tyVar elimBody

-- note that there are no forall bound type inference variables
elimTypeTyVars ty = mapTypeTypeM elimTypeTyVars ty

{-
Eliminate the type inference variables in an expression, i.e.:
- replace bound type variables by the type they are bound to
- any unbound flexiTyVars are bound to a given default type

this default type may only contain global type variables, i.e,
no locally bound type variables

-}

elimExprBoundTyVars :: Type -> CoreExpr -> IO CoreExpr

elimExprBoundTyVars defaultTy = mapExprTyM (elimTypeBoundTyVars defaultTy)

elimTypeBoundTyVars :: Type -> Type -> IO Type

elimTypeBoundTyVars defaultTy ty@(TyVarTy tyVar)
| isMutTyVar tyVar = do

content <- readTITyVar tyVar
case content of

Nothing -> return defaultTy
Just ty -> elimTypeBoundTyVars defaultTy ty

| otherwise = return ty
elimTypeBoundTyVars defaultTy (ForAllTy tyVar body) = do
elimBody <- elimTypeBoundTyVars defaultTy body
return $ ForAllTy tyVar elimBody

-- note that there are no forall bound type inference variables
elimTypeBoundTyVars defaultTy ty =

mapTypeTypeM (elimTypeBoundTyVars defaultTy) ty

{-
replace every occurrence of a data constructor of the type to be removed
(e.g. type [Bool], replace Cons Bool, Nil Bool) by
a respective term variable c

A.11. TYPEINFERENCE.HS 105

whose type coincides with that of the data constructor, except that all
occurrences of the type to be removed are replaced by a new type variable
(e.g. c : Bool -> beta -> beta, respectively n : beta

Expects that type arguments are always in front of term arguments in
a sequence of applications.
-}

replaceConstructors ::
ConsToPlaceholders -> [Type] -> CoreExpr -> CountIO CoreExpr

replaceConstructors consToPlaceholders tyArgs e = replace e
where
-- replace :: CoreExpr -> IO (CoreExpr)
replace expr@(App _ _) =

case collectArgs expr of
(fun@(Var id), args) -> replaceDefault (getUnique id) args (mkApps fun)
(fun, args) -> do

repFun <- replace fun
repArgs <- mapM replace args
return (mkApps repFun repArgs)

replace expr@(Var id) | null tyArgs =
replaceDefault (getUnique id) [] (mkApps expr)

replace expr@(Con dataCon args) = replaceDefault
(getUnique dataCon) args (Con dataCon)

replace expr = mapExprExprM replace expr

replaceDefault :: Unique -> [CoreExpr] -> ([CoreExpr] -> CoreExpr)
-> CountIO (CoreExpr)

replaceDefault unique args defaultFun = do
repArgs <- mapM replace args
fromMaybe (return $ defaultFun repArgs) $ do

createPlaceholder <- consToPlaceholders unique
remainingRepArgs <- compareTys repArgs tyArgs
return $ do

tyVar <- newTITyVar
return $ mkApps (createPlaceholder tyVar) remainingRepArgs

compareTys :: [CoreExpr] -> [Type] -> Maybe [CoreExpr]

compareTys exprs [] = Just exprs
compareTys (Type tyE : exprs) (ty:tys) | tyE == ty = compareTys exprs tys
compareTys _ _ = Nothing

{-
Reinsert constructors
Replace the constructor placeholders by data constructors,
if their type is not of the desired polymorphic form,
i.e. the type doesn’t contain the buildTyVar,
like e.g. c : tau -> buildTyVar -> buildTyVar, n : buildTyVar
(note that we don’t care about other type variables in the types
of the constructor placeholders)
-}

106 APPENDIX A. HASKELL CODE

reInsertConstructors :: PlaceholdersToCons -> CoreExpr -> IO CoreExpr

reInsertConstructors placeholdersToCons = insert
where
insert expr@(Var id) = do

maybeCons <- placeholdersToCons id
return (fromMaybe expr maybeCons)

insert expr = mapExprExprM insert expr
{-
Instantiate polymorphic functions
Threads bindings of inlineable functions (i.e. the created instances),
bindings for the original definitions to be able to undo instantiation
and a UniqSupply for creating new names.
-}

instantiate :: InlineEnv -> Type -> CoreExpr -> InM (InstEnv, CoreExpr)

instantiate inlineEnv resultTy expr = do
(_, oldInstEnv, _) <- updateState (\(inInst,_,us)->(inInst,emptyUFM,us))
instExpr <- go oldInstEnv expr
(_, newInstEnv, _) <- updateState (\(inInst,_,us)->(inInst,oldInstEnv,us))
return (newInstEnv, instExpr)
where
go :: InstEnv -> CoreExpr -> InM CoreExpr
go oldInstEnv expr@(App _ (Type _)) =

case fun of
Var id -> instantiateTyApp inlineEnv oldInstEnv resultTy expr id tyArgs
_ -> do

funInst <- go oldInstEnv fun
return $ mkApps funInst tyArgs

where
(fun, tyArgs) = collectArgs expr

go oldInstEnv expr@(Var id) =
instantiateTyApp inlineEnv oldInstEnv resultTy expr id []

go oldInstEnv expr =
mapExprExprM (go oldInstEnv) expr

instantiateTyApp :: InlineEnv -> InstEnv -> Type
-> CoreExpr -> Id -> [CoreArg] -> InM CoreExpr

instantiateTyApp inlineEnv oldInstEnv resultTy expr id tyArgs = do
(inInst, newInstEnv, _) <- readState
case do
instId <- lookupUFM inInst id
-- same type arguments if any:

guard $ cheapEqExpr expr (((\(e,_,_)->e) $ fromJust $
lookupUFM oldInstEnv instId ‘mplus‘ lookupUFM newInstEnv instId))

return $ Var instId
of
Just instExpr -> return instExpr
Nothing ->

A.11. TYPEINFERENCE.HS 107

case lookupUFM inlineEnv id of
Nothing -> return expr -- unchanged
Just body ->

let idResultTy = resultTyOfTy (idType id) in
if isTyConInTy resultTyCon idResultTy &&

(isTyInTy resultTy $ resultTyOfTy $ coreExprType expr) then
-- instantiate the partial application
instantiateId id expr (tyBetaReduce body tyArgs)

else if isTyInTy resultTy idResultTy then
-- instantiate id, without possible type arguments
instantiateId id (Var id) body

else return expr -- unchanged
where
TyConApp resultTyCon _ = resultTy

{-
Type beta reduction
e.g. (\a b -> e) Int Char ~> e [Int/a] [Char/b]
-}

tyBetaReduce :: CoreExpr -> [CoreArg] -> CoreExpr
tyBetaReduce expr args = go expr args []

where
go :: CoreExpr -> [CoreArg] -> [(TyVar, Type)] -> CoreExpr
go (Lam tyVar body) (Type ty : args) subs =
go body args ((tyVar, ty) : subs)

go expr [] subs = substExpr (listToUFM subs) expr

substExpr :: UniqFM Type -> CoreExpr -> CoreExpr
substExpr subst = mapExprTy (substTy subst)

substTy :: UniqFM Type -> Type -> Type
substTy subst = mapTypeTyVar $

\tyVar -> fromMaybe (TyVarTy tyVar) (lookupUFM subst tyVar)

{-
Analysis functions for types
-}

resultTyOfTy :: Type -> Type
resultTyOfTy = lastFunResultTy . snd . splitForAllTys

lastFunResultTy :: Type -> Type
lastFunResultTy (FunTy arg res) = lastFunResultTy res
lastFunResultTy ty = ty

-- searches only for fully applied algebraic type
isTyConInTy :: TyCon -> Type -> Bool
isTyConInTy _ (TyVarTy _) = False
isTyConInTy searchTyCon (TyConApp tyCon tys) =
searchTyCon == tyCon || any (isTyConInTy searchTyCon) tys

isTyConInTy searchTyCon (FunTy arg res) =

108 APPENDIX A. HASKELL CODE

isTyConInTy searchTyCon arg || isTyConInTy searchTyCon res
isTyConInTy searchTyCon (ForAllTy _ body) = isTyConInTy searchTyCon body

-- searches only for algebraic type
isTyInTy :: Type -> Type -> Bool
isTyInTy _ (TyVarTy _) = False
isTyInTy searchTy ty@(TyConApp tyCon tys) =
searchTy == ty || any (isTyInTy searchTy) tys

isTyInTy searchTy (FunTy arg res) =
isTyInTy searchTy arg || isTyInTy searchTy res

isTyInTy searchTy (ForAllTy _ body) = isTyInTy searchTy body

{-
Instantiation
replace expression by new id
store information for inlining and undoing instantiation
-}

instantiateId :: Id -> CoreExpr -> CoreExpr -> InM CoreExpr

instantiateId oldId oldExpr body = do
(inInst, instEnv, uniqSupply) <- readState
let (uniqSupply1, uniqSupply’) = splitUniqSupply uniqSupply

(uniqSupply2, uniqSupply3) = splitUniqSupply uniqSupply’
newId = mkInstId uniqSupply1 oldId (coreExprType oldExpr)
renamedBody = rename uniqSupply2 body

writeState
(addToUFM inInst oldId newId
, addToUFM instEnv newId (oldExpr, renamedBody, newId)
, uniqSupply3)

return $ Var newId

mkInstId :: UniqSupply -> Id -> Type -> Id

mkInstId us id ty =
mkVanillaId (setNameUnique (idName id) (uniqFromSupply us)) ty

mkCopyVar :: Var -> State UniqSupply Var

mkCopyVar var = do
us <- readState
let (us1,us2) = splitUniqSupply us
writeState us2
return $ setVarUnique var (uniqFromSupply us1)

{-
Rename all locally bound vars of the expression using new uniques
-}

A.11. TYPEINFERENCE.HS 109

rename :: UniqSupply -> CoreExpr -> CoreExpr
rename us expr = snd $ deTriv $ flip runStateMT us $ renameExpr emptyUFM expr

renameExpr :: UniqFM IdOrTyVar -> CoreExpr -> State UniqSupply CoreExpr

renameExpr env (Var id) =
case lookupUFM env id of

Just reId -> return $ Var reId -- ASK Simon: loss of attached information?
Nothing -> do

reTy <- renameTy env $ idType id
return $ Var $ setIdType id reTy

renameExpr env (Lam id body) = do
reId <- renameId env id
reBody <- renameExpr (addToUFM env id reId) body
return $ Lam reId reBody

renameExpr env (Let (NonRec id body) expr) = do
reId <- renameId env id
reBody <- renameExpr env body
reExpr <- renameExpr (addToUFM env id reId) expr
return $ Let (NonRec reId reBody) reExpr

renameExpr env (Let (Rec binds) expr) = do
reIds <- mapM (renameId env) ids
let newEnv = addListToUFM env (zip ids reIds)
reBodies <- mapM (renameExpr newEnv) bodies
reExpr <- renameExpr newEnv expr
return $ Let (Rec (zip reIds reBodies)) reExpr
where
(ids,bodies) = unzip binds

renameExpr env (Case scrutinee id alts) = do
reScrutinee <- renameExpr env scrutinee
reId <- renameId env id
reAlts <- mapM (renameAlt (addToUFM env id reId)) alts
return $ Case reScrutinee reId reAlts
where
renameAlt env (con, ids, expr) = do

reIds <- mapM (renameId env) ids
reExpr <- renameExpr (addListToUFM env (zip ids reIds)) expr
return (con, reIds, reExpr)

renameExpr env (Type ty) = do
reTy <- renameTy env ty
return $ Type reTy

renameExpr env expr = mapExprExprM (renameExpr env) expr -- Con, App

renameTy :: UniqFM IdOrTyVar -> Type -> State UniqSupply Type

renameTy env ty@(TyVarTy tyVar) = return $
case lookupUFM env tyVar of

Just reTyVar -> TyVarTy reTyVar -- ASK Simon: loss of attached information?
Nothing -> ty

renameTy env (ForAllTy tyVar ty) = do

110 APPENDIX A. HASKELL CODE

reTyVar <- mkCopyVar tyVar
reTy <- renameTy (addToUFM env tyVar reTyVar) ty
return $ ForAllTy reTyVar reTy

renameTy env ty = mapTypeTypeM (renameTy env) ty -- TyConApp, FunTy

renameId :: UniqFM IdOrTyVar -> Id -> State UniqSupply Id

renameId env id = do
reTy <- renameTy env $ idType id
mkCopyVar $ setIdType id reTy

{-
uninstantiate
undo instantiations that were not inlined
-}

uninstantiate :: InstEnv -> TyVar -> CoreExpr -> CoreExpr

uninstantiate instEnv resultTyVar expr@(Var id) =
fromMaybe expr $ do

(oldExpr, _, _) <- lookupUFM instEnv id
guard $ not $ isTyVarInTy resultTyVar (idType id)
return oldExpr

uninstantiate instEnv resultTyVar expr =
mapExprExpr (uninstantiate instEnv resultTyVar) expr

-- searches only for type variable
isTyVarInTy :: TyVar -> Type -> Bool
isTyVarInTy searchTyVar (TyVarTy tyVar) = searchTyVar == tyVar
isTyVarInTy searchTyVar (TyConApp tyCon tys) =

any (isTyVarInTy searchTyVar) tys
isTyVarInTy searchTyVar (FunTy arg res) =

isTyVarInTy searchTyVar arg || isTyVarInTy searchTyVar res
isTyVarInTy searchTyVar (ForAllTy _ body) = isTyVarInTy searchTyVar body

--
-- End

A.12 Core.hs

-- syntax for F expressions
-- By Olaf Chitil, with minor changes by Kirsten Chevalier

A.12. CORE.HS 111

module Core where

import Prelude -- hiding (Rec)
import ThisUnique
import IOExts (IORef, newIORef, readIORef, writeIORef)
import PrettyCore
import ThisUtil

data Unused = Unused

--------------------- data and type constructors ----------------------
data TyCon = List | Tuple | Bool | Int | Char | Kind deriving (Eq, Show)
data Con = C Name deriving Eq

cons = C Named{n_occ="Cons", n_uniq=consDataConKey}
nil = C Named{n_occ="Nil", n_uniq=nilDataConKey}
tuple = C Named{n_occ="Tuple", n_uniq= -4}
true = C Named{n_occ="True", n_uniq= -5}
false = C Named{n_occ="False", n_uniq= -6}

patType :: Pat -> Type
patType pat = case pat of

ConPat c -> conType c
LitPat (MachChar _) -> TyConApp Char []

-- this actually should be something more general
DEFAULT -> (TyConApp List [(TyConApp Int [])])

-- determine the type of a constant, from Const.lhs
conType :: Con -> Type
conType = dataConType

-- determine type of a data constructor, signature from DataCon.lhs
dataConType :: Con -> Type

dataConType (C Named{n_occ="Cons"}) =
ForAllTy alpha $ FunTy alphaTy

(FunTy (TyConApp List [alphaTy]) (TyConApp List [alphaTy]))
dataConType (C Named{n_occ="Nil"}) = ForAllTy alpha $ TyConApp List [alphaTy]
dataConType (C Named{n_occ="Tuple"}) =

ForAllTy alpha $ ForAllTy beta $
alphaTy ‘FunTy‘ betaTy ‘FunTy‘ TyConApp Tuple [alphaTy,betaTy]

dataConType (C Named{n_occ="True"}) = TyConApp Bool []
dataConType (C Named{n_occ="False"}) = TyConApp Bool []
dataConType (C Named{n_occ="C#"}) = TyConApp Char []
dataConType (C Named{n_occ="I#"}) = TyConApp Int []

alpha, beta, gamma, delta :: TyVar
alpha = mkTyVar Named{n_occ="a",n_uniq= -10} starKind
beta = mkTyVar Named{n_occ="b",n_uniq= -11} starKind
gamma = mkTyVar Named{n_occ="c",n_uniq= -12} starKind
delta = mkTyVar Named{n_occ="d",n_uniq= -13} starKind

alphaTy = TyVarTy alpha

112 APPENDIX A. HASKELL CODE

betaTy = TyVarTy beta
gammaTy = TyVarTy gamma
deltaTy = TyVarTy delta

charTy = TyConApp Char []
intTy = TyConApp Int []
boolTy = TyConApp Bool []

starKind :: Type
starKind = TyConApp Kind []

instance Uniquable Con where
getUnique (C name) = n_uniq name

--
-- module SrcLoc

data SrcLoc
= NoSrcLoc
| SrcLoc String -- A precise location (file name)
| UnhelpfulSrcLoc String

mkGeneratedSrcLoc = UnhelpfulSrcLoc "<compiler-generated-code>"
--
-- module OccName

type OccName = String -- extremly simplified

--
-- module Name

data Name = Named {n_occ :: OccName, n_uniq :: Unique}

nameUnique :: Name -> Unique
nameUnique = n_uniq

mkLocalName :: Unique -> OccName -> SrcLoc -> Name
mkLocalName uniq occ loc = Named { n_uniq = uniq, n_occ = occ }

mkSysLocalName :: Unique -> String -> Name
mkSysLocalName uniq fs = Named { n_uniq = uniq,

n_occ = fs}

mkDerivedName :: (OccName -> OccName)
-> Name -- Base name
-> Unique -- New n_uniq
-> Name -- Result is always a value name

mkDerivedName f name uniq = name {n_uniq = uniq, n_occ = f (n_occ name)}

-- When we renumber/rename things, we need to be
-- able to change a Name’s Unique to match the cached
-- one in the thing it’s the name of. If you know what I mean.

A.12. CORE.HS 113

setNameUnique name uniq = name {n_uniq = uniq}

instance Uniquable Name where
getUnique = nameUnique

instance Eq Name where
n1 == n2 = nameUnique n1 == nameUnique n2

--
-- module Var

data Var
= VarG {

varName :: Name,
realUnique :: Unique, -- Key for fast comparison -- Need to convert

-- from Int#
varType :: Type,
varDetails :: VarDetails

}

data VarDetails
= AnId
| TyVar
| MutTyVar (IORef (Maybe Type)) -- Used during unification;

Bool -- True <=> this is a type signature
-- variable, which should not be unified
-- with a non-tyvar type

| UVar -- Usage variable
| Build Type

instance Uniquable Var where
getUnique = realUnique

instance Eq Var where
var1 == var2 = realUnique var1 == realUnique var2

varUnique :: Var -> Unique
varUnique (VarG {realUnique = uniq}) = uniq

setVarUnique :: Var -> Unique -> Var
setVarUnique var uniq = var {realUnique = uniq,

varName = setNameUnique (varName var) uniq}

setVarName :: Var -> Name -> Var
setVarName var new_name

= var { realUnique = getUnique new_name, varName = new_name }

setVarType :: Var -> Type -> Var
setVarType var ty = var {varType = ty}

---------------------- type variables: -------------------------------

114 APPENDIX A. HASKELL CODE

type TyVar = Var

tyVarName = varName
tyVarKind = varType

setTyVarUnique = setVarUnique
setTyVarName = setVarName

mkTyVar :: Name -> Kind -> TyVar
mkTyVar name kind = VarG { varName = name

, realUnique = nameUnique name
, varType = kind
, varDetails = TyVar
}

mkSysTyVar :: Unique -> Kind -> TyVar
mkSysTyVar uniq kind = VarG { varName = name

, realUnique = uniq
, varType = kind
, varDetails = TyVar}

where
name = mkSysLocalName uniq "t"

newMutTyVar :: Name -> Kind -> IO TyVar
newMutTyVar name kind =

do loc <- newIORef Nothing
return (VarG { varName = name,

realUnique = nameUnique name,
varType = kind,
varDetails = MutTyVar loc False})

readMutTyVar :: TyVar -> IO (Maybe Type)
readMutTyVar (VarG {varDetails = MutTyVar loc _}) = readIORef loc

writeMutTyVar :: TyVar -> Maybe Type -> IO ()
writeMutTyVar (VarG {varDetails = MutTyVar loc _}) val = writeIORef loc val

makeTyVarImmutable :: TyVar -> TyVar
makeTyVarImmutable tyvar = tyvar { varDetails = TyVar}

isTyVar :: Var -> Bool
isTyVar (VarG {varDetails = details}) = case details of

TyVar -> True
MutTyVar _ _ -> True
other -> False

isMutTyVar :: Var -> Bool
isMutTyVar (VarG {varDetails = MutTyVar _ _}) = True
isMutTyVar other = False

------------------- id construction: ---------------------------

A.12. CORE.HS 115

type Id = Var
type IdOrTyVar = Var

idName = varName
idType = varType
idUnique = varUnique

setIdUnique :: Id -> Unique -> Id
setIdUnique = setVarUnique

setIdName :: Id -> Name -> Id
setIdName = setVarName

mkIdVar :: Name -> Type -> Id
mkIdVar name ty
= VarG {varName = name, realUnique = nameUnique name, varType = ty,

varDetails = AnId }

isId :: Var -> Bool
isId (VarG {varDetails = AnId}) = True
isId other = False

--
-- basicTypes/Id

mkId :: Name -> Type -> Id
mkId = mkIdVar

mkVanillaId :: Name -> Type -> Id
mkVanillaId name ty = mkId name ty {-vanillaIdInfo-}

-- SysLocal: for an Id being created by the compiler out of thin air...
-- UserLocal: an Id with a name the user might recognize...
mkUserLocal :: OccName -> Unique -> Type -> SrcLoc -> Id
mkSysLocal :: String -> Unique -> Type -> Id

mkSysLocal fs uniq ty = mkVanillaId (mkSysLocalName uniq fs) ty
mkUserLocal occ uniq ty loc = mkVanillaId (mkLocalName uniq occ loc) ty

setIdType :: Id -> Type -> Id
setIdType id ty = setVarType id ty

--
-- types/Type

-- data types

type SuperKind = Type
type Kind = Type

data Type
= TyVarTy TyVar

116 APPENDIX A. HASKELL CODE

| TyConApp TyCon [Type] -- Might not be saturated.
| FunTy Type Type
| ForAllTy TyVar Type -- TypeKind
deriving Eq -- Sketchy!

instance Show Type where
show t = pretty t

infixr 5 ‘FunTy‘

-- constructor specific functions:

mkTyVarTy :: TyVar -> Type
mkTyVarTy = TyVarTy

mkFunTy :: Type -> Type -> Type
mkFunTy arg res = FunTy arg res

mkFunTys :: [Type] -> Type -> Type
mkFunTys tys ty = foldr FunTy ty tys

splitFunTy_maybe :: Type -> Maybe (Type, Type)
splitFunTy_maybe (FunTy arg res) = Just (arg, res)
splitFunTy_maybe other = Nothing

funResultTy :: Type -> Type
funResultTy (FunTy arg res) = res
funResultTy ty = error "funResultTy"

mkTyConApp :: TyCon -> [Type] -> Type
mkTyConApp = TyConApp

isForAllTy :: Type -> Bool
isForAllTy (ForAllTy tyvar ty) = True
isForAllTy _ = False

splitForAllTys :: Type -> ([TyVar], Type)
splitForAllTys ty = split ty ty []

where
split orig_ty (ForAllTy tv ty) tvs = split ty ty (tv:tvs)
split orig_ty t tvs = (reverse tvs, orig_ty)

--
-- CoreSyn

-- the main data type

infixl 8 ‘App‘ -- App brackets to the left

data Expr b -- "b" for the type of binders,
= Var Id
| Lit Literal --NEW
| Con Con [Arg b] -- Guaranteed saturated -- Not in Core
| App (Expr b) (Arg b)

A.12. CORE.HS 117

| Lam b (Expr b)
| Let (Bind b) (Expr b)
| Case (Expr b) b [Alt b] -- Binder gets bound to value of scrutinee

-- DEFAULT case must be last, if it occurs at all
| Type Type -- This should only show up at the top level of an Arg

------- Literal ---------------
data Literal = MachChar Char | MachInt Integer

litType (MachChar c) = (TyConApp Char [])
litType (MachInt i) = (TyConApp Int [])

type Arg b = Expr b -- Can be a Type

type Alt b = (Pat, [b], Expr b)

-- (DEFAULT, [], rhs) is the default alternative
-- Remember, a Con can be a literal or a data constructor

data Pat = ConPat Con | LitPat Literal | DEFAULT

data Bind b = NonRec b (Expr b)
| Rec [(b, (Expr b))]

type CoreBndr = IdOrTyVar
type CoreExpr = Expr CoreBndr
type CoreArg = Arg CoreBndr
type CoreBind = Bind CoreBndr
type CoreAlt = Alt CoreBndr

mkApps :: Expr b -> [Arg b] -> Expr b
mkApps f args = foldl App f args

collectArgs :: Expr b -> (Expr b, [Arg b])
collectArgs expr
= go expr []
where

go (App f a) as = go f (a:as)
go e as = (e, as)

isTypeArg (Type _) = True
isTypeArg other = False

applyTy :: Type -> Type -> Type
applyTy (ForAllTy tv ty) arg = substTy’ ([(tv,arg)]) ty
applyTy other arg = error("applyTy: trying to apply a non-forall-type, namely "

++ (prettyTy other))

applyTys :: Type -> [Type] -> Type
applyTys fun_ty arg_tys
= go [] fun_ty arg_tys
where

go env ty [] = substTy’ env ty

118 APPENDIX A. HASKELL CODE

go env (ForAllTy tv ty) (arg:args) = go ((tv,arg):env) ty args
go _ other _ = error("applyTys: trying to apply a non-forall-type, namely "

++ (pretty other))

substTy’ :: [(TyVar,Type)] -> Type -> Type
substTy’ env = mapTypeTyVar (\var -> case lookup var env of

Just ty -> ty
Nothing -> TyVarTy var)

--
-- module CoreUtils

coreExprType :: CoreExpr -> Type

coreExprType (Var var) = idType var
coreExprType e@(App _ _)

= case collectArgs e of
(fun, args) -> applyTypeToArgs e (coreExprType fun) args

coreExprType _ = error "coreExprType only partially defined"

-- The first argument is just for debugging
applyTypeToArgs :: CoreExpr -> Type -> [CoreExpr] -> Type
applyTypeToArgs e op_ty [] = op_ty

applyTypeToArgs e op_ty (Type ty : args)
= -- Accumulate type arguments so we can instantiate all at once

applyTypeToArgs e (applyTys op_ty tys) rest_args
where

(tys, rest_args) = go [ty] args
go tys (Type ty : args) = go (ty:tys) args
go tys rest_args = (reverse tys, rest_args)

{-
@cheapEqExpr@ is a cheap equality test which bails out fast!

True => definitely equal
False => may or may not be equal

-}

cheapEqExpr :: Expr b -> Expr b -> Bool

cheapEqExpr (Var v1) (Var v2) = v1==v2
cheapEqExpr (Con con1 args1) (Con con2 args2)

= con1 == con2 &&
and (zipWith cheapEqExpr args1 args2)

cheapEqExpr (App f1 a1) (App f2 a2)
= f1 ‘cheapEqExpr‘ f2 && a1 ‘cheapEqExpr‘ a2

cheapEqExpr (Type t1) (Type t2) = t1 == t2

cheapEqExpr _ _ = False

A.13. THISUTIL.HS 119

smpId text un ty = mkVanillaId (Named text un) ty
smpTyVar text un = mkTyVar Named{n_occ=text,n_uniq=un} starKind

nameEquals var string = ((n_occ (varName var)) == string)

A.13 ThisUtil.hs

-- miscellaneous utilities
-- By Olaf Chitil
module ThisUtil where
import Core

fst3 (x,_,_) = x
snd3 (_,x,_) = x
thrd3 (_,_,x) = x

-- map a monadic function on type component of a Var
mapVarM :: Monad m => (Type -> m Type) -> Var -> m Var
mapVarM f id@VarG{varType = ty} = do

mapTy <- f ty
return (id{varType = mapTy})

-- literals always have the same type
mapLitM :: Monad m => (Type -> m Type) -> Literal -> m Literal
mapLitM f x = return(x)

-- map a function on type component of a Var
mapVar :: (Type -> Type) -> Var -> Var
mapVar f id@VarG{varType = ty} = id{varType = f ty}

{-
Map a monadic function on all type components of a type
-}

mapTypeTypeM :: Monad m => (Type -> m Type) -> (Type -> m Type)

mapTypeTypeM f ty@(TyVarTy _) = return ty
mapTypeTypeM f (TyConApp con tys) = do
mapTys <- mapM f tys
return $ TyConApp con mapTys

mapTypeTypeM f (FunTy fun arg) = do
mapFun <- f fun
mapArg <- f arg
return $ FunTy mapFun mapArg

mapTypeTypeM f (ForAllTy tyVar body) = do

120 APPENDIX A. HASKELL CODE

mapBody <- f body
return $ ForAllTy tyVar mapBody

{-
map a function on all type components of an expression
-}

mapExprTy :: (Type -> Type) -> (CoreExpr -> CoreExpr)

mapExprTy f (Var id) = Var (mapVar f id)
mapExprTy f (Lam id body) = Lam (mapVar f id) (mapExprTy f body)
mapExprTy f (Let (NonRec id body) expr) =

Let (NonRec (mapVar f id) (mapExprTy f body)) (mapExprTy f expr)
mapExprTy f (Let (Rec binds) expr) =
Let (Rec (map mapBind binds)) (mapExprTy f expr)
where
mapBind (id, body) = (mapVar f id, mapExprTy f body)

mapExprTy f (Case scrutinee id alts) =
Case (mapExprTy f scrutinee) (mapVar f id) (map mapAlt alts)
where
mapAlt (con, ids, expr) = (con, map (mapVar f) ids, mapExprTy f expr)

mapExprTy f (Type ty) = Type (f ty)
mapExprTy f expr = mapExprExpr (mapExprTy f) expr -- Con, Fun

{-
map a function on all expression components of an expression
-}

mapExprExpr :: (CoreExpr -> CoreExpr) -> (CoreExpr -> CoreExpr)

mapExprExpr f (Con con args) = Con con (map f args)
mapExprExpr f (App fun arg) = App (f fun) (f arg)
mapExprExpr f (Lam id body) = Lam id (f body)
mapExprExpr f (Let (NonRec id body) expr) =

Let (NonRec id (f body)) (f expr)
mapExprExpr f (Let (Rec binds) expr) =

Let (Rec (map mapBind binds)) (f expr)
where
mapBind (id, body) = (id, f body)

mapExprExpr f (Case scrutinee id alts) =
Case (f scrutinee) id (map mapAlt alts)
where
mapAlt (con, ids, expr) = (con, ids, f expr)

mapExprExpr f expr = expr -- Var, Type

{-
map a monadic function on all type components of an expression
-}

mapExprTyM :: Monad m => (Type -> m Type) -> (CoreExpr -> m CoreExpr)

A.13. THISUTIL.HS 121

mapExprTyM f (Lit l) = do
mapId <- mapLitM f l
return(Lit mapId)

mapExprTyM f (Var id) = do
mapId <- mapVarM f id
return (Var mapId)

mapExprTyM f (Con con args) = do
elimArgs <- mapM (mapExprTyM f) args
return (Con con elimArgs)

mapExprTyM f (App fun arg) = do
elimFun <- mapExprTyM f fun
elimArg <- mapExprTyM f arg
return (App elimFun elimArg)

mapExprTyM f (Lam id body) = do
mapId <- mapVarM f id
mapBody <- mapExprTyM f body
return (Lam mapId mapBody)

mapExprTyM f (Let (NonRec id body) expr) = do
mapId <- mapVarM f id
mapBody <- mapExprTyM f body
mapExpr <- mapExprTyM f expr
return (Let (NonRec mapId mapBody) mapExpr)

mapExprTyM f (Let (Rec defs) expr) = do
mapDefs <- mapM mapBindingsMf defs
mapExpr <- mapExprTyM f expr
return (Let (Rec mapDefs) mapExpr)
where
mapBindingsMf (id, expr) = do
mapId <- mapVarM f id
mapExpr <- mapExprTyM f expr
return (mapId, mapExpr)

mapExprTyM f (Case expr id alts) = do
mapExpr <- mapExprTyM f expr
mapId <- mapVarM f id
mapAlts <- mapM mapAltMf alts
return (Case mapExpr mapId mapAlts)
where
mapAltMf (con, ids, expr) = do

mapIds <- mapM (mapVarM f) ids
mapExpr <- mapExprTyM f expr
return (con, mapIds, mapExpr)

mapExprTyM f (Type ty) = do
mapTy <- f ty
return (Type mapTy)

{-
map a monadic function on all expression components of an expression
-}

mapExprExprM :: Monad m => (Expr a -> m (Expr a)) -> Expr a -> m (Expr a)

mapExprExprM f (Con con args) = do
recArgs <- mapM f args

122 APPENDIX A. HASKELL CODE

return (Con con recArgs)
mapExprExprM f (App fun arg) = do

recFun <- f fun
recArg <- f arg
return (App recFun recArg)

mapExprExprM f (Lam id body) = do
recBody <- f body
return (Lam id recBody)

mapExprExprM f (Let (NonRec id body) expr) = do
recBody <- f body
recExpr <- f expr
return (Let (NonRec id recBody) recExpr)

mapExprExprM f (Let (Rec defs) expr) = do
let (ids,bodies) = unzip defs
recBodies <- mapM f bodies
recExpr <- f expr
return (Let (Rec (zip ids recBodies)) recExpr)

mapExprExprM f (Case expr id alts) = do
recExpr <- f expr
let (cons,idss,exprs) = unzip3 alts
recExprs <- mapM f exprs
return (Case recExpr id (zip3 cons idss recExprs))

mapExprExprM f expr = return expr -- Var, Type

mapExprBoolM :: Monad m => (Expr a -> m (Bool)) -> Expr a -> m (Bool)

mapExprBoolM f (Con con args) = do
recArgs <- (mapM f args)
return (and recArgs)

mapExprBoolM f (App fun arg) = do
recFun <- f fun
recArg <- f arg
return (recFun && recArg)

mapExprBoolM f (Lam id body) = do
recBody <- f body
return recBody

mapExprBoolM f (Let (NonRec id body) expr) = do
recBody <- f body
recExpr <- f expr
return (recBody && recExpr)

mapExprBoolM f (Let (Rec defs) expr) = do
let (ids,bodies) = unzip defs
recBodies <- mapM f bodies
recExpr <- f expr
return ((and recBodies) && recExpr)

mapExprBoolM f (Case expr id alts) = do
recExpr <- f expr
let (cons,idss,exprs) = unzip3 alts
recExprs <- mapM f exprs
return (recExpr && (and recExprs))

mapExprBoolM f exp = do
res <- f exp
return res -- Var, Type

A.14. THISUNIQUE.HS 123

mapExprBool :: (Expr a -> Bool) -> Expr a -> Bool

mapExprBool f (Con con args) = (all f args)
mapExprBool f (App fun arg) = ((f fun) && (f arg))
mapExprBool f (Lam id body) = (f body)
mapExprBool f (Let (NonRec id body) expr) = (f body) && (f expr)
mapExprBool f (Let (Rec defs) expr) =
let (ids,bodies) = unzip defs
in
((all f bodies) && (f expr))

mapExprBool f (Case expr id alts) =
let (cons,idss,exprs) = unzip3 alts
in
((f expr) && (all f exprs))

mapExprBool f exp = (f exp)

{-
Map a function on the (unbound) type variable components of a type
-}

mapTypeTyVar :: (TyVar -> Type) -> (Type -> Type)

mapTypeTyVar f (TyVarTy tyVar) = f tyVar
mapTypeTyVar f ty = mapTypeType (mapTypeTyVar f) ty

{-
Map a function on all type components of a type
-}

mapTypeType :: (Type -> Type) -> (Type -> Type)

mapTypeType f ty@(TyVarTy tyVar) = ty
mapTypeType f (TyConApp tyCon args) = TyConApp tyCon (map f args)
mapTypeType f (FunTy arg res) = FunTy (f arg) (f res)
mapTypeType f (ForAllTy tyVar body) = ForAllTy tyVar (f body)

A.14 ThisUnique.hs

{-
Uniques
UniqSupply
Containers for Uniques: UniqFM, UniqSet
-- By Olaf Chitil
-}
module ThisUnique where

-- from Unique.lhs
class Uniquable a where

getUnique :: a -> Unique

124 APPENDIX A. HASKELL CODE

type Unique = Integer

instance Uniquable Integer where
getUnique u = u

consDataConKey :: Unique
nilDataConKey :: Unique
listTyConKey :: Unique
consDataConKey = -1
nilDataConKey = -2
listTyConKey = -3

-- UniqSupply

newtype UniqSupply = US Integer

mkMyUniqSupply :: Integer -> UniqSupply
splitUniqSupply :: UniqSupply -> (UniqSupply, UniqSupply)
uniqFromSupply :: UniqSupply -> Unique
uniqsFromSupply :: Int -> UniqSupply -> [Unique]

mkMyUniqSupply u = US u
splitUniqSupply (US u) = (US (2*u), US (2*u+1))
uniqFromSupply (US u) = u
uniqsFromSupply 0 _ = []
uniqsFromSupply (n+1) us =

uniqFromSupply us : uniqsFromSupply n (fst $ splitUniqSupply us)

newtype UniqFM elt = UFM [(Unique,elt)] deriving Show
emptyUFM :: UniqFM elt
addToUFM :: Uniquable key => UniqFM elt -> key -> elt -> UniqFM elt
listToUFM :: Uniquable key => [(key,elt)] -> UniqFM elt
listToUFM_Directly

:: [(Unique, elt)] -> UniqFM elt
addListToUFM :: Uniquable key => UniqFM elt -> [(key,elt)] -> UniqFM elt
lookupUFM :: Uniquable key => UniqFM elt -> key -> Maybe elt
lookupUFM_Directly :: UniqFM elt -> Unique -> Maybe elt
foldUFM :: (elt -> a -> a) -> a -> UniqFM elt -> a
eltsUFM :: UniqFM elt -> [elt]
ufmToList :: UniqFM elt -> [(Unique, elt)]

emptyUFM = UFM []
addToUFM (UFM xs) key elt = UFM ((getUnique key,elt):xs)
listToUFM keyElts = addListToUFM emptyUFM keyElts
listToUFM_Directly = UFM
addListToUFM (UFM xs) keyElts = UFM ((map (\(k,e) ->

(getUnique k,e)) keyElts) ++ xs)
lookupUFM (UFM xs) key = lookup (getUnique key) xs
lookupUFM_Directly (UFM xs) u = lookup u xs
foldUFM c n ufm = foldr c n $ eltsUFM ufm
eltsUFM (UFM xs) = snd $ unzip xs
ufmToList (UFM xs) = xs

A.15. MONADTRANSFORMER.HS 125

newtype UniqSet a = MkUniqSet (UniqFM a) deriving Show
emptyUniqSet :: UniqSet a
emptyUniqSet = MkUniqSet emptyUFM
addOneToUniqSet :: Uniquable a => UniqSet a -> a -> UniqSet a
addOneToUniqSet (MkUniqSet set) x = MkUniqSet (addToUFM set x x)
addListToUniqSet :: Uniquable a => UniqSet a -> [a] -> UniqSet a
addListToUniqSet (MkUniqSet set) xs = MkUniqSet (addListToUFM set [(x,x) | x<-xs])
lookupUniqSet :: Uniquable a => UniqSet a -> a -> Maybe a
lookupUniqSet (MkUniqSet set) x = lookupUFM set x
foldUniqSet :: (a -> b -> b) -> b -> UniqSet a -> b
foldUniqSet c n (MkUniqSet set) = foldUFM c n set

uniqSetToList :: UniqSet a -> [a]
uniqSetToList = foldUniqSet (:) []

lookupUniqSetUniq :: Uniquable a => UniqSet elt -> a -> Maybe elt
lookupUniqSetUniq (MkUniqSet set) key = lookupUFM set key

A.15 MonadTransformer.hs

{-
Monad transformers
State monad transformer
Maybe monad transformer
By Olaf Chitil
-}

module MonadTransformer where

import Monad(MonadPlus(..))

class MonadT t where
lift :: Monad m => m a -> t m a
liftInside :: (Monad m, MonadT t2) => t m a -> t (t2 m) a

{-
The trivial Monad

-}

newtype Triv a = Triv a

instance Monad Triv where
return = Triv
(Triv x) >>= f = f x

deTriv :: Triv a -> a
deTriv (Triv x) = x

126 APPENDIX A. HASKELL CODE

{-
The state monad transformer
-}

newtype StateT s m a = STM (s -> m (s,a))

instance Monad m => Monad (StateT s m) where
return x = STM (\s -> return (s,x))
(STM f) >>= gsm = STM (\s1 -> do -- >>= is the same as "bindM"

(s2,x) <- f s1
-- implicitly use bind of little "m"

let STM g = gsm x
g s2)

updateState :: Monad m => (s -> s) -> StateT s m s
updateState f = STM (\s -> return (f s, s))

readState :: Monad m => StateT s m s
readState = updateState id

writeState :: Monad m => s -> StateT s m s
writeState s = updateState (_ -> s)

runStateMT :: Monad m => StateT s m a -> s -> m (s,a)
runStateMT (STM f) s = f s

instance MonadT (StateT s) where
lift m = STM (\s -> do

x <- m
return (s,x))

liftInside (STM f) = STM (\s -> lift (f s))

type State s a = StateT s Triv a

{-
The Maybe monad transformer
-}

newtype MaybeT m a = MT (m (Maybe a))

instance Monad m => Monad (MaybeT m) where
return x = MT $ return $ Just x
(MT m1) >>= f = MT $ do
res <- m1
case res of
Just x -> do

let MT m2 = f x
m2

Nothing -> return Nothing

A.16. COUNTIO.HS 127

runMaybeT :: MaybeT m a -> m (Maybe a)
runMaybeT (MT m) = m

instance MonadT MaybeT where
lift m = MT $ do x <- m; return $ Just x
liftInside (MT m) = MT (lift m)

instance Monad m => MonadPlus (MaybeT m) where
mzero = MT $ return $ Nothing
(MT m1) ‘mplus‘ (MT m2) = MT $ do

res <- m1
case res of

Just x -> return res
Nothing -> m2

A.16 CountIO.hs

{-

Idea: (CountIO a) is a Monad like (IO a) except that it supports the operations

getCounter :: CountIO Int
incCounter :: CountIO ()
resetCounter :: CountIO ()

-- By Kirsten Chevalier and Franklyn Turbak
-}

module CountIO where

import MonadTransformer
import Maybe(isJust, fromJust, fromMaybe)

type TIM a = MaybeT IO a

type TIMC a = MaybeT (StateT Integer IO) a -- acts like: CountIO (Maybe a)

tim2timc :: TIM a -> TIMC a
tim2timc (MT m) = (MT (liftCount m))

returnIO :: a -> IO a
returnIO x = return x

io2iomaybe :: (IO a) -> (IO (Maybe a))
io2iomaybe io = do {x <- io;

return (Just x)}

io2timc :: (IO a) -> (TIMC a)
io2timc io = MT (liftCount (io2iomaybe io))

type CountIO a = StateT Integer IO a

128 APPENDIX A. HASKELL CODE

getCounter :: CountIO Integer
getCounter = readState

incCounter :: CountIO ()
incCounter = do {updateState (\x -> x+ 1);

return ()}

resetCounter :: CountIO ()
resetCounter = do {updateState (\x -> 0);

return ()}

runCounter :: (CountIO a) -> IO a
runCounter cm = do{(finalCounter, result) <- runStateMT cm 0;

return result}

runCounterWith :: (CountIO a) -> Integer -> IO (a, Integer)
runCounterWith cm init = (do{(finalCounter, result) <- runStateMT cm init;

return (result, finalCounter)})

liftCount :: (IO a) -> (CountIO a)
liftCount = lift

printCounter :: CountIO ()
printCounter = do {count <- getCounter;

lift (putStr ("Count = " ++ (show count) ++ "\n"));
return ()
}

test :: IO ()
test = runCounter (do {printCounter;

incCounter;
printCounter;

incCounter;
printCounter
})

A.17 PrettyCore.hs

--
-- Pretty Printing
-- by Olaf Chitil
module PrettyCore where

import Pretty
import Core

class Ppr a where
ppr :: Bool -> a -> Doc
-- the boolean value implements a simple heuristic for
-- avoiding some unnecessary braces

A.17. PRETTYCORE.HS 129

class PprT a where
pprT :: a -> Doc

pprParen :: Bool -> Doc -> Doc
pprParen True doc = parens doc
pprParen False doc = doc

instance (Ppr b, PprT b) => Ppr (Expr b) where
-- ppr _ (Var x) = ppr False x

ppr p (Lit x) = ppr False x
ppr p (Var x) = pprParen p (pprT x)
ppr _ (Con con []) = ppr False con
ppr p (Con con args) = pprParen p

$ ppr False con <+> (braces $ sep (map (ppr True) args))
ppr p expr@(App e1 e2) =
pprParen p $ ppr False fun <+> sep (map (ppr True) args)
where
(fun, args) = collectArgs expr

ppr p (Lam x e) = pprParen p
$ char ’\\’ <> pprT x <+> text "->" <+> ppr False e

ppr p (Let bind e) = pprParen p
$ text "let" <+> ppr False bind
$$ (nest 2 $ text "in" <+> ppr False e)

ppr p (Case e x alts)
= sep [sep [text "case" <+> ppr False e,

text "of" <+> ppr True x <+> char ’{’],
nest 6 (sep (punctuate semi (map pprAlt alts))),
char ’}’]

ppr p (Type ty) = ppr p ty

pprAlt :: (Ppr b, PprT b) => Alt b -> Doc
pprAlt (con, xs, e)

= hang (ppr False con <+> hsep (map (ppr True) xs) <+> text "->") 4
(ppr False e)

instance (Ppr b, PprT b) => Ppr (Bind b) where
ppr _ (NonRec x e) = pprEquation x e
ppr _ (Rec eqs) = braces $ vcat (map (uncurry pprEquation) eqs)

pprEquation :: (PprT x, Ppr e) => x -> e -> Doc
pprEquation x e = sep [pprT x, equals <+> ppr False e <> semi]

instance Ppr Type where
ppr _ (TyVarTy a) = ppr False a
ppr _ (TyConApp con []) = ppr False con
ppr p (TyConApp List [arg]) = text "[" <> ppr False arg <> text "]"
ppr p (TyConApp Tuple [left,right]) =

text "(" <> ppr False left <> text "," <> ppr False right <> text ")"
ppr p (TyConApp con args) =

pprParen p $ ppr False con <+> hsep (map (ppr True) args)
ppr p (FunTy t1 t2) = pprParen p $

(ppr True t1 <+> text "->" <+> ppr False t2)
ppr p (ForAllTy tyVar body) =

130 APPENDIX A. HASKELL CODE

pprParen p $
text "forall" <+> ppr False tyVar <> text"." <+> ppr False body

instance Ppr TyCon where
ppr _ List = text "[]"
ppr _ Tuple = text "(,)"
ppr _ Bool = text "Bool"
ppr _ Kind = text "*"
ppr _ Int = text "Int"
ppr _ Char = text "Char"

instance Ppr Con where
ppr p (C name) = ppr p name

instance Ppr Pat where
ppr p (ConPat con) = ppr p con
ppr p (LitPat lit) = ppr p lit
ppr p DEFAULT = text "DEFAULT"

instance Ppr Var where
ppr _ var = ppr False (varName var)

instance PprT Var where
pprT var = ppr False (varName var) <+> char ’:’ <+> ppr False (varType var)

instance Ppr Literal where
ppr _ (MachInt x) = (text (show x))
ppr _ (MachChar x) = (text (show x))

instance Ppr Name where
-- Right now the text "<> integer u" is commented out so as
-- not to print out Uniques. Uncomment it to print out Uniques.

ppr _ (Named name u) = text name <> (if (u > 10000) then (text "") else (integer u))

pretty :: Ppr a => a -> String
pretty = render . ppr False

prettyTy :: Type -> String
prettyTy = render . ppr False

prettyId :: Id -> String
prettyId = render . ppr False

prettyIO :: Ppr a => a -> IO ()
prettyIO = putStr . pretty

prettyList :: Ppr a => [a] -> String
prettyList exprs = (concat (map (\ x -> (pretty x) ++ " ") exprs))

Appendix B

Running Test Cases

This appendix is intended for someone who might be running and/or modifying the code.
All the code for the type-inference-based deforestation system resides in the directo-

ry /home/lumberjacks/krc/lumberjack/Inference, which lives on the file server named
crete and should be accessible from all the Aegean machines. The instructions below assume
that this is your current working directory.

Among other things, this directory contains a file called Makefile, which contains rules
for how to compile the code. When you make a change to the code, you can compile it all at
once by typing make. This creates an executable program called all. Now you can run it on
any Haskell program. There are some test programs in the Test subdirectory; ones on which
type-inference-based deforestation definitely runs are in the Working subdirectory of that
directory. So, if you wanted to run the program on the working test case called appendF.hs,
you would type:

$./all Test/Working/appendF.hs -fhi-version=408

The -fhi-version=408 is necessary, and tells the GHC front-end which version of interface
files to expect. (Interface files have names that end in .hi – if you use GHC to compile
a Haskell program called foo.hs, it will create a file called foo.hi that tells GHC which
definitions foo.hs exports. In the Inference directory, there are a number of links to
interface files, all of whose names begin with Prel (for “Prelude”), and these links must be
present to run the GHC front-end.)

In the Test subdirectory, there is a shell script called autotest which runs all the test
cases in the Working subdirectory. To run the script and redirect the output to the file
results.may29, you would type:

$ Test/autotest >&results.may29

Finally, the module RunTypeInference does not currently call the F-to-Haskell translator
to generate Haskell code for the result program, but if you changed it to print out the Haskell
code rather than test results, you would type:

$./all Test/Working/appendF.hs -fhi-version=408 >appendFresults.hs

131

132 APPENDIX B. RUNNING TEST CASES

Of course, you could substitute in any Haskell program instead of Test/Working/app-

endF.hs, and you could call the output file anything else instead of appendFresults.hs.
There is a shell script called hstest in the Test subdirectory, which expects that Run-

TypeInference will print out the Haskell code resulting from performing deforestation on
each test case (and will not print out anything else). You can run it by typing:

$ Test/hstest

For each file foo.hs in the Test/Working directory, this will create a file called foo.hsre-

sults.hs in the Test/Working/Test/Working directory. (Changing the script to call the
file something more sensible and put it in a different directory is left as an exercise for the
reader.)

