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Abstract. Typed programming languages offer safety guarantees that
help programmers write correct code, but typical language implemen-
tations offer no proof that source-level guarantees extend to executable
code. Moreover, typical implementations link programs with unsafe run-
time system (RTS) code. I present a compiler for the functional language
Haskell that preserves some of the properties of Haskell’s type system.
The soundness proof for the combination of the compiler and a verified
RTS requires a proof that the compiler emits code that cooperates cor-
rectly with the RTS. In particular, the latter proof must address the
boundary between the user program and the garbage collector. In this
paper, I introduce a minimalist intermediate language type system that
ensures that well-typed programs cannot make the garbage collector go
wrong. I also discuss compilation strategies that allow simplifying the
RTS. The work I present in this paper yields a simple and safe compila-
tion system.

1 Introduction

When programmers program in a statically typed language, they feel confi-
dent that the compiler will reject programs that would do nonsensical things
if executed. Such languages offer a promise that “well-typed programs won’t go
wrong”: they have type systems that are sound (relative to a formal seman-
tics), meaning that running a type-correct program only executes operations
that make sense [1]. The type system defines what it means to “make sense”.

Skeptical programmers feel less confident: they know that the source lan-
guage’s type system cannot prevent the compiler from transforming their pro-
gram into one with a different meaning, or from linking that program with buggy
runtime system (RTS) code to create a faulty executable. Typical compilers for
typed languages have no safety proofs, generate untyped code (for example, C
or assembly language) and link compiled code with RTS code written in unsafe
languages such as C. A bug in the compiler or RTS could destroy the relationship
between safety properties in source code and in executable code.
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Programmers can regain some of their lost confidence when the RTS and
compiler are proven to be safe. The benefits of such a proof are contingent on
the correctness of the boundary between the RTS and compiled programs. More
specifically, in this paper I look at the boundary between programs and one
component of the RTS: the garbage collector. I focus on compiling Haskell, a
typed functional language [2]. The Glasgow Haskell Compiler (GHC) [3] is a
widely used implementation of Haskell. I use GHC’s front-end to obtain code for
my compiler, and I use GHC as a baseline for comparison.

Garbage collector bugs are just one example of many potential RTS flaws that
could negate source-level safety guarantees. But they are an important one. For
example, as recently as March 2009, a security researcher uncovered a garbage
collector bug in the Mozilla Firefox Web browser that could allow an attacker to
run arbitrary code on a victim’s computer [4]. Regardless of how common such
bugs are, for some applications, one crash or unsafe memory access is too many.
Users of current state-of-the-art compilers, even for safe languages, have no way
to guarantee that a compiler or RTS bug will not cause such behavior in their
code. For example, GHC’s RTS consists of over 30,000 lines of C code [5] [6],
and a cursory search of the GHC bug tracker revealed several reports of collector
bugs that caused GHC-compiled programs to crash [7].

Verifying the collector narrows this safety gap. The correctness of a collector
requires a well-defined interface between compiled programs and the collector.
The problem I address in this paper is how a compiler for Haskell can ensure
that compiled code uses this interface correctly (given a verified collector).

Contributions In this work, I develop a lightweight compiler for Haskell that
generates code for the PowerPC architecture that is statically guaranteed to
make proper use of the garbage collector. When I say it is lightweight, I mean
that I have tried to minimize the theoretical and implementation effort neces-
sary to get the compiler working. This reduction in implementation effort has a
performance cost; later in this paper, I discuss my efforts to determine that cost.

To frame the problem, I chose GHC and Compcert as the endpoints for the
compiler; the choices of source and target language constrain some of the other
design choices. GHC is a widely used, highly optimizing compiler for Haskell,
and I take advantage of its front-end to obtain code in Core, GHC’s intermediate
language [3]. Compcert is a C compiler that has been proven to preserve the
semantics of source programs; I take advantage of its back-end, which accepts
code in the Cminor language and generates PowerPC assembly code [8].

My main contribution in this paper is the first set of performance results (that
I know of) for a safety-preserving compiler for a functional language. These re-
sults suggest how much runtime overhead we must pay in exchange for increased
confidence in program safety. Novel aspects of my compiler include:

– Its simple and lightweight nature. Other work on safety-preserving compila-
tion involves complex type systems and heavyweight formalisms. However,
such work has not yet produced a production-quality compiler for a func-
tional language (see Section 2). My work is a different path to a complete,
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high-assurance compiler for Haskell. (The compiler does not support all ex-
isting Haskell programs, because GHC compiles certain programs using fea-
tures exposed in Core that are not supported by my compiler, such as foreign
function calls and certain primitive operations.)

– The combination of a simple static type system with dynamic checks to sup-
port safety preservation. While other systems combine static and dynamic
checks (see Section 4), the idea of using such a combination to simplify a
safety-preserving compiler has not been studied, as far as I know.1

– The use of a strict intermediate language. Haskell is a language with call-
by-need semantics: that is, it is lazy [2]. In a lazy language, every argument
to a given function invocation is evaluated either zero or one times. Expres-
sions are only evaluated if their values are demanded: that is, if a primitive
operation requires their value. In contrast, in a strict language, if a function
invocation is executed, then each of its arguments is evaluated exactly once.
GHC, the dominant implementation of Haskell, maintains call-by-need se-
mantics down to the lowest level of code and supports laziness in its RTS. In
his account of the abstract machine on which GHC’s RTS is based, Peyton
Jones described handling updates (a key aspect of laziness) as “much the
trickiest part of the Spineless Tagless G-machine” [9]. By compiling Haskell
to a strict intermediate language, I obviate the need to support laziness in
the RTS. Omitting this support can only make the RTS smaller and thus eas-
ier to verify. This compilation technique is not new, but has been relatively
neglected (see Section 5).

Methods I designed a series of typed intermediate languages for the compiler
middle-end; the type systems for these languages capture just the property I
wish to check statically. I implemented the compiler as a series of transforma-
tions through these intermediate languages. I formalized the languages’ static
and dynamic semantics and proved that the compiler’s transformations preserve
safety. I ran the code that the compiler generates to test that it works (for the
subset of Core that I have chosen to support). In order to determine whether my
approach performs acceptably, I measured the performance of programs com-
piled by my system and compared these with results obtained from an existing
mainstream compiler. I define acceptable performance as that of unoptimized
GHC-compiled code. Because people use unoptimized code for practical work
(for example, for day-to-day development when they do not want to wait for
long compiles), a system that generates code that performs about as well as un-
optimized code is good enough to be useful for at least some purposes. Because
the additional performance cost of using my system arises partially from the
dynamic safety checks it inserts, I measured the performance of code generated
by my compiler both with these checks enabled, and with the checks disabled.
Because my näıve implementation performed unacceptably badly, I tried to de-
termine which optimizations needed to be implemented to achieve better perfor-

1 However, the safety preservation proof for the entire compiler is not yet complete.
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mance. I implemented these optimizations, most of which are standard compiler
optimizations (see Section 7).

After implementing these optimizations, I found that my compiler now gener-
ates code that runs between 2 and 9 times slower than optimized GHC-compiled
programs, for a small set of benchmarks (for more details, see Section 7). Safety
checks add overhead of 5-18%. The optimizations also need to be proven safe
in order to show that the same safety proofs I have done for the näıve compiler
apply to the entire optimized system. However, the optimized system is still guar-
anteed to be safe in the sense that it typechecks code after every optimization
pass, and well-typed code cannot execute unsafe operations.

Paper overview Section 2 provides necessary background and definitions.
Section 3 presents the compilation pipeline. Rather than discussing the entire
pipeline in detail, I focus on two key aspects: the simple type system (Section 4)
and the handling of laziness (Section 5). Section 6 summarizes correctness re-
sults, and Section 7 gives performance results. Section 8 concludes. I discuss
related work throughout the paper rather than in a separate section.

2 Garbage collection and safer compilation

Pointers, unboxed values, boxed values I define a pointer as a valid address
that the running program can dereference to obtain a record that it allocated
earlier during execution and has not freed, or a field of such a record. Program
state (registers, the stack, and fields of heap-allocated records) can contain boxed
or unboxed data. A value is boxed if it is represented as a pointer to heap-allocated
data, and a value is unboxed if it is a self-contained bit pattern. By extension,
a type is called a boxed type if its values have a boxed representation, and an
unboxed type if its values have an unboxed representation [10].

Garbage collection Garbage collection is the automatic reclamation of heap
storage space that is no longer needed by a running program [11]. In garbage
collection jargon, the user application program that does useful work is called
the mutator (as from the collector’s perspective, all the user program does is
allocate and alter memory that the collector is burdened with managing). A
tracing garbage collector conservatively approximates the graph of heap data
currently accessible by a running program (that is, the graph of live data) [12].
Tracing garbage collectors require a root set for their mutator programs: the
set of pointers into the heap contained by program variables. They start from
the root set and follow pointers recursively to determine the graph of reachable
data. Conventionally, garbage collectors for functional language implementations
are precise: they require information about which program values are pointers.
Not all precise collectors require this information to be statically apparent: for
example, collectors for Lisp [13] or ML [14] typically identify pointers through
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dynamic tags. I target a precise collector that does need this information stat-
ically, so verifying the entire executable (including the collector) depends on
verifying that programs declare their root sets correctly.

Safer compilation The strongest notion of “safety” we can imagine for a com-
piler is that it always generates code that is semantically equivalent to the source
program, given a formal semantics that captures all of the program properties
we care about. This notion is called semantic preservation. Providing a machine-
checked proof that a compiler preserves semantics maximizes our confidence that
the property holds: in that case, the only component of the system that users
need to trust is the proof checker. Recently, Leroy accomplished this for C in
the Compcert compiler [15]. Building such a compiler for Haskell is possible but
daunting, especially since Haskell lacks a canonical formal semantics.

A more approachable alternative is to prove that the compiler preserves types.
A type-preserving compiler comes with a proof that its transformations map
well-typed programs onto other well-typed programs, possibly in the same lan-
guage or possibly in a different one. Thus, a type-preserving compiler promises
to generate well-typed code, but not necessarily to preserve program meaning.
One example is the TAL compiler [16], which compiles code in System F (an
archetypal simple functional language) to typed assembly language. Integrating
an RTS with a TAL compiler requires either trusting the RTS (which I have
argued is risky business) or implementing the RTS in TAL. It seems difficult to
implement a garbage collector in a typed language, even a very low-level typed
language like TAL. Recent work on designing a garbage-collecting typed assem-
bly language addresses this challenge, though this approach has not been used
with a functional language compiler [17].

Previous work on type-preserving compilation has effectively pushed the com-
plexity of the source language type system as far down the compilation chain
as possible. I adopt a different philosophy, and ask how much complexity we
can remove from the source language type system. As of yet, there has been no
production-quality TAL compiler for a functional language, which makes a more
incremental approach seem appealing. (Recently, Chen and colleagues developed
a production-quality optimizing TAL compiler for the object-oriented language
C# [18], but that is the only example of such a compiler I know of.) Rather
than building a fully type-preserving compiler for Core, I combine a very simple
intermediate language type system with the insertion of dynamic checks to yield
a compiler with a straightforward safety preservation argument.

3 The compilation pipeline

My compiler accepts Core code from GHC and emits Cminor code to be com-
piled by Compcert. The middle end is my contribution. The translations from
Core through my compiler’s intermediate languages preserve types; the safety
argument for the compiler relies on Compcert’s stronger safety guarantee to
carry the type preservation property through to the executable code. Because
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Haskell

E♭

Fig. 1. The compilation pipeline.
Languages and translations in the
dashed area are new. Gray arrows
preserve types, while black arrows
preserve semantics.

it removes some of the type checks from the source language type system, the
compiler must insert some additional runtime safety checks into compiled code.

GHC’s front-end parses and typechecks Haskell source programs, then desug-
ars them into Core, a typed intermediate language. GHC does most of its opti-
mizations after translation to Core, and before translation to a lower-level un-
typed intermediate language [19]. To use GHC as a front-end, I take advantage
of GHC’s “External Core” feature, which produces a text-based representation
of optimized Core code from a Haskell source file.2 The advantage of using Ex-
ternal Core is that it has well-defined static and dynamic semantics, as well as a
stand-alone executable typechecker and interpreter, and so using GHC-compiled
Core programs does not require trusting GHC itself [21]. Core was originally
similar to System F, with the addition of case and let constructs [19]. More re-
cent releases of GHC use a version of Core based on System FC , which extends
System F with type equality coercions [22].

Compcert is a certified compiler for a subset of C. It is certified because
it comes with a machine-checked proof that it compiles C programs to se-
mantically equivalent assembly-language programs [15]. Compcert targets the
PowerPC platform. Compcert’s back-end language, Cminor, is my compiler’s
target language. It is a C-like low-level intermediate language designed as a tar-
get for compiling C programs. It is untyped, except for distinguishing between
integer and floating-point variables. Thus, Cminor’s integer type encompasses
both pointers and integers. In the rest of this paper, I explain how I attacked
the problem of bridging the gap between Core and Cminor: in particular, recon-
ciling Core’s rich type system with Cminor’s simple type system, and reconciling
Core’s call-by-need semantics with Cminor’s call-by-value semantics.

2 I use the version of External Core emitted by GHC version 6.10.1 [20]. With Aaron
Tomb, I overhauled this feature, which had fallen into disrepair in a number of
previous releases of GHC, and got it working in GHC 6.10.1. I also rewrote GHC’s
libraries for Core manipulation, on which my own compiler relies.
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Figure 1 illustrates the compilation pipeline. The new languages in between
Core and Cminor are E♭, D, and GCminor.3 E♭ is a strict functional language
with a very simple type system. In contrast with Core’s rich type system, E♭ col-
lapses all types that are represented by pointers into a single type � (pronounced
“box”). The translation from Core to E♭ makes laziness explicit with force and
delay constructs. D is a strict first-order functional language that adds record
types to E♭’s simple type system. Translating from E♭ to D mainly consists of
closure conversion: that is, transforming definitions of first-class functions into
top-level declarations of functions that take their free variables as arguments
(packaged in a record) [23]. GCminor is a slight variation on Cminor that adds
explicit allocation of memory in an implicitly garbage-collected heap. Translat-
ing from D to GCminor makes allocation operations and runtime checks explicit,
as well as setting up the runtime layout of records. Allocations and function calls
in GCminor are parameterized by root sets, allowing garbage collection to occur
at any time: at any code point, the current root set is statically apparent.4

The translations from Core to E♭ and from E♭ to D are type-preserving,
while the translations from D to GCminor and from GCminor to Cminor must
be proven semantics-preserving, as the target languages are untyped. (While the
first two proofs are complete, the second two are not.) Linking the Cminor code
produced by my compiler with a verified garbage collector5 yields the complete
safety-preserving compilation system.

4 Type system

The type system of E♭, my compiler’s first intermediate language, is designed
to make it possible to verify that programs declare their root sets correctly.
Thus, just enough information has to be statically manifest in a program to
determine whether each program variable is a pointer. The type system I describe
here captures the property that all reads or writes are to valid record fields.
It is designed to be as simple as possible while still capturing that property.
The features of Core’s type system (including algebraic datatypes, parametric
polymorphism, recursive types, and type equality coercions) are all individually
well-understood, but they interact with each other in subtle ways that make
it hard to remove one feature without removing many others. I saw no middle
ground between completely maintaining Core’s type system all the way down to
a low level of abstraction, and simplifying it radically.

Thus, the type system of E♭ has only three types: Int, for unboxed (machine)
integers; Float, for unboxed floating-point numbers; and �, for all values that
are represented by pointers:

t→ Int | Float | �

3 As Core is based on System F, the language names are inspired by the C minor
scale, whose first four pitches are C, D, E♭, and F.

4 GCminor, and the translations from D to GCminor and GCminor to Cminor, are
due to Andrew McCreight and Andrew Tolmach.

5 The garbage collector is by Andrew McCreight, building on his previous work [24].
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Operationally, a value of type � represents a pointer that code can dereference to
yield a heap object that has a header and possibly some fields. Because the type
system is not powerful enough to express the entire static semantics of Core, a
well-typed E♭ program can evaluate to a checked runtime error if it uses data in-
consistently with the semantics of Core (for example, by trying to apply a list as
if it were a function). In other words, E♭ can type more programs than Core can:
there are some “junk” E♭ programs that do not correspond to any valid Core
program. So, abstractly, the formal semantics for E♭ attributes a meaning to
these “junk” programs: the runtime error value. Concretely, compiling E♭ neces-
sitates inserting runtime checks. You might ask why it is better for a program to
halt with a checked runtime error than for it to crash. Fail-stop behavior, which
runtime checks achieve, isolates errors and ensures that an erroneous program
is killed before it can either do dangerous things such as reading memory that
belongs to a different process, or silently return the wrong results.

E♭ examples The following fragment of E♭ code defines a higher-order function
(call it apply-head) that takes another function, a list, and a default value, and
applies the function to the head of the list if the list is non-empty. If the list is
empty, then it returns the default value.

λ→Int (f:�) (z:Int) (xs:�) →1

case xs of2

Nil → z3

Cons (y:�) (ys:�) → f�→Int y4

Line 1 begins the definition of a function returning an Int (λ→Int) that takes
three arguments: f and xs, with type �, and z, with type Int. The case expres-
sion (line 2) inspects the constructor with which xs was built and dispatches
the appropriate alternative: line 3 if it was Nil, and line 4 if it was Cons. Line
4 binds the variables y to the head of the list and ys to the tail of the list, and
applies the function argument f to y. The type tag �→Int on f says: “Check at
runtime that f is a function that takes a � argument and returns an Int result.”
(The notation � →Int does not denote a function type, despite appearances:
E♭ has no function types.) The case expression may fail with a checked runtime
error if xs is a record tagged with a tag other than Nil or Cons, or if it evaluates
to a function. Note that this is different from an equivalent function in Haskell,
which would take an argument of type [a] (list of a, for any type a) and would
guarantee by type safety that one of the case alternatives always matches.

This code is well-typed according to the typing rules of E♭, because the case

expression is over a value with � type; f was declared with type �; y was
declared with type �, matching the type tag on the application; and the results
of the two case alternatives both have the same type: Int. Note that although
the application on line 4 says that we expect f to take a � and return an Int,
E♭’s type system doesn’t check this property statically.

The following code typechecks, but would signal a runtime error:

apply-head�→Int→�→Int (λ
→� (x:�) → x) 1 〈Cons 〈True〉, 〈Nil〉〉
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The notation 〈Cons 〈True〉, 〈Nil〉〉 builds a record whose tag is Cons and
whose two fields are also records (the empty record tagged with True and the
empty record tagged with Nil). This code will pass the typechecker because
all the arguments to apply-head have types consistent with the type annota-
tion attached to its application, but at runtime, when the code for apply-head
attempts to apply its first argument, it will fail with a checked runtime error,
because the return type of the first argument to apply-head here is �, while
the application on line 4 of the apply-head code expects f to return an Int.

In contrast, the typechecker rejects the following code statically:

apply-head�→Int→�→Int 1 (λ
→� (x:�) → x) 〈Cons 〈True〉, 〈Nil〉〉

as it attempts to pass in an Int value for a � argument and a � value for an
Int argument, contradicting the type tags attached to the application.

The same example also illustrates another kind of dynamic check necessitated
by E♭’s type system. If this were Core code, we would know that the case expres-
sion on line 2 was exhaustive, because the type system guarantees statically that
xs has type [a] for some type a and that every list constructor (Nil and Cons)
has a corresponding alternative. However, E♭’s type system attributes a single
type, �, to all values that case expressions can legally scrutinize. In effect, all
tags are like branches of a single algebraic data type. So, there must always be an
implicit default case alternative that signals a runtime error. You might think
that this kind of check adds no additional cost, because code that dispatches
case alternatives must check the tag of the scrutinee anyway, in order to choose
the alternative to execute. However, adding the checks rules out the possibility
of using jump tables (which are sometimes more effcient than decision trees) to
compile case expressions [25].

A more serious problem arises with types such as Haskell’s pair type:

λ→� (p:�) →1

case p of2

Pair (x:�) (y:�) → x3

This code is for the familiar fst function, which extracts the first component
from a pair (written with the Pair tag here). In the equivalent code in Haskell
or Core, the compiler would need to insert no tag checking code at all; compiled
code could just extract the first field of p without checking its tag. But the
implicit default alternative in E♭ makes this case expression more expensive
to execute. The pair type is an example of a product type: an algebraic data
type with only one constructor. Product types occur frequently in Haskell: for
example, ordinary integers are defined as a product type that wraps an unboxed
machine integer. Some of these checks can be eliminated by reconstructing some
type information at the D stage (see the next section), but not others.

Figure 2 shows a selection of typing rules for E♭, which specify formally the
principles that I’ve shown through examples. (The other rules are conventional.)
The typing relation is of the usual form: Γ ⊢∆ e : t (pronounced “the expression
e has type t under typing assumptions Γ and ∆”). The variable environment Γ
maps variables to types. The typing rules also depend on another environment,
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Γ ∪ {v 7→ t1} ⊢ e : t2

Γ ⊢ (λ→t2 (v : t1). e) : �
(ELam)

Γ ⊢ e1 : � Γ ⊢ e2 : t1

Γ ⊢ (e1t1→t2 e2) : t2
(EApp)

∆(tag) = 〈t1, · · · , tn〉
Γ ⊢ e1 : t1 · · · Γ ⊢ en : tn

Γ ⊢ 〈tag e1, · · · , en〉 : �
(ERecord)

Γ ⊢ e : �
−−−−−−−−−−−−−−−→
∆(tag) = 〈t1, · · · , tj〉

−−−−−−−−−−−−−−−→
Γ ∪

−−−−−→
{v 7→ t} ⊢ ealt : t

Γ ⊢ case e of
−−−−−−−−−−−−−→
(tag

−−→
(v, t) → ealt) : t

(ECase)

Fig. 2. Selected E♭ typing rules

∆, that is generated as part of the Core-to-E♭ translation and is thus considered
constant for a given program. This environment maps a record tag T to a list
of types of the fields that a record tagged with T should have. Because ∆ is
constant for a given program (typechecking a subexpression does not extend it
with new entries), I omit the ∆ subscript from the rules in Figure 2.

D: types to eliminate runtime checks D’s type system is the same as E♭’s
type system, with the addition of record types. The E♭-to-D translation does
closure conversion, as mentioned in Section 3. D implements both closures and
E♭’s records with the same record construct, and record types allow efficient
handling of explicit closures. Without record types and syntax for unchecked
field access, extracting free variables from closures would be too expensive.

t→ Int | Float | � | tag ∆ : tag 7→ t∗

Record types correspond to E♭’s record tags, so as before, the tag environment
∆ is needed. ∆ maps record types onto lists of types (of the record’s fields).

The type system has a subtyping rule to allow record-typed expressions in
contexts that expect a � type. Record types also allow eliminating some runtime
checks for cases. If the compiler can prove that the scrutinee of a case expression
must have a specific record type, then that type determines the case alternative
that will execute at runtime; thus, it is safe to replace the entire case expression
with the code for that alternative. This is similar to the conventional case-on-
known-constructor optimization [19]. Why throw away type information in one
compilation phase only to reconstruct it in a later one? Because discarding type
information simplifies the translation, and reconstructing it is an optional opti-
mization that does not affect the correctness of the system. In addition, known
functions (those whose bodies are statically known) do not require runtime type
checks. Identifying these functions is another optimization.
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free var 1

free var n

...

[function 
code]

heap static data
Fig. 3. The runtime layout of a heap
record representing a closure. The first
field of the record points to a type descrip-
tor, which describes the argument type
and the result type of the closure (both
of which are �, in this case). The second
field of the record points to the closure
code, while the remaining fields give the
closure’s free variables.

Runtime checks: implementation In GCminor code, there is no distinc-
tion in the language between closure records and data records. A closure record
represents a function: conceptually, a pointer to code, along with a list of free
variables used in that code. The translation from D to GCminor sets up the
concrete runtime layout for records shown in Figure 3, as well as inserting the
code that does runtime checks. All records, including closure records, have an
additional field pointing to a type descriptor, as shown in the figure.

The following is an example of Cminor code for a checked function call.6 If
runtime checks were disabled, only line 2 would remain: f would be called un-
conditionally. With safety checks disabled in this example, if f actually expected
a pointer rather than an integer, a segmentation fault could occur. The safety
check prevents this: it terminates the program before the bad call to f can occur.

if (37 == int32[int32[f - 4] + 8])1

result = int32[f](0);2

else3

type_error();4

In this code, f is the operator, represented by a closure record. In this example,
the literal 37 (line 1) corresponds to the statically visible type tag that is part
of the syntax for applications in D, and the memory access int32[int32[f -

4] + 8] corresponds to the dynamic type tag on the operator in an application.
The code checks the static tag against the dynamic tag, calling the function if
the tags match and signalling an error otherwise. The D-to-GCminor translation
assigns these type tags. It can represent the type tags as small integers because
there are only a fixed number of types in a given program.

Records for data constructions, as opposed to closures, have similar type tags;
the code that checks these tags is folded into the code that does case dispatch.
Thus, the theoretical upper bound for the cost of runtime checks amounts to at
most one additional conditional statement per function call and case expression.7

In Section 7 I try to find out what the added cost tends to be in practice.

6 I have simplified the syntax of Cminor here to eliminate some irrelevant details.
7 The cost would be higher with a back-end that supported jump tables, since runtime

checks for cases rule out this possibility. Compcert does not support jump tables.
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Related work Abadi and colleagues observed that in a statically typed lan-
guage, it is useful to be able to inspect the type of a value at runtime, raising
an exception if the type is erroneous [26]. They introduced a data type Dynamic

with a constructor that pairs a value with a type tag, and a deconstructor (called
typecase) that branches based on the type tag. E♭’s � type is similar to the Dy-

namic type, and E♭’s application and case constructs serve a similar purpose to
typecase. The � type is also reminiscent of the exception type in Standard ML:
a dynamically extensible datatype constructor [27].

By contrast with this work, which turns static checks into dynamic checks,
work on soft typing attempts to turn dynamic checks into static checks. For
example, Wright and Cartwright used soft typing to add partial static type-
checking to Scheme [28]. Their work aims to provide better error checking for
programmers and improve performance by eliminating some runtime checks.

The TAL compilation framework [16] requires no dynamic checks, because
the type system for its target language is as powerful as the type system for its
source language. To allow TAL code to interact with an untrusted collector, Van-
derwaart and Crary defined a type system to describe the interface of a precise
collector [29]. Also, Hawblitzel and Petrank presented an automatically verified
garbage collector that uses a formal specification of the mutator interface [30].
Their specification of the mutator-collector interface models the source language
type system directly. In general, TAL-based approaches require a more complex
type system, but avoid additional dynamic checks.

5 Compiling laziness

In a language with call-by-need semantics (lazy evaluation), every function ar-
gument is evaluated at most once. For example, in the following code:

let f = λ x → x * x in f (37 + 42)

the value of (37+42) is computed at the first reference to x in f. The second ref-
erence to x sees the cached value of the addition (79), rather than recomputing
(37+42). Typically, Haskell implementations implement laziness by wrapping
function arguments in thunks, or suspended computations. Functions expect
their lazily evaluated arguments to be pointers to thunks. When the thread
of execution demands the value of a thunk, code inserted by the compiler calls
the code that does the suspended computation. Then, this code does an update:
it overwrites the pointer to the thunk with a pointer to code that returns the
computed value. Thus, further references to the same pointer will just return
the same value, without recomputation [9].

One way to implement selective laziness in a strict language is to provide
constructs that let programmers create thunks explicitly (delay) and demand
their values explicitly (force). Borrowing from one presentation of delay and
force in the Scheme language [31, p. 261], I use them to preserve the call-by-need
semantics of Core in a translation to a language with call-by-value semantics.
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Laziness in E♭ The following example, a lazy version of the fst example from
Section 4, illustrates how E♭ handles laziness. (Because E♭ has call-by-value
semantics, the earlier version of fst was strict.)

let fst = λ→� (p:�) →1

case !p of2

Pair (x:�) (y:�) → !x in3

fst /g�→�→� a b/4

where a and b are assumed to be bound somewhere in the enclosing scope. (I
omit the type annotations on the application of fst and its binding, because
here, fst is a known function and thus requires no dynamic checks on calls.)

The ! (line 2) denotes force, and slashes (line 4) denote delay. The argument
of fst is a thunk yielding a pair when it is evaluated, so it has to be forced (line
2) before use. Since any Core value can be a thunk, all references to � variables
have to be forced (line 3). The ! operator evaluates its operand to weak-head
normal form [9], so the first field of p still needs to be forced on line 3.

Laziness in D The following is the D code for the lazy fst function:
let fst = λ→� (p:�) =5

case FORCE(p) as p1 of6

Pair � FORCE(p1#1)7

FORCE is shorthand for a pseudo-macro that actually appears inline. The syntax
(p1#1) on line 7 selects the first field from the record p1. D replaces pattern-
matching on records with selection of numbered record fields. To allow for such
selections to be typed, D’s case expression names the result of evaluating the
scrutinee (on line 6 above, p1). In this example, the typechecker would check the
Pair alternative in an environment where p1 is bound to type Pair; if there were
more alternatives, then the typechecker would check each one in an environment
where p1 was bound to the corresponding type for the tag for each.

In D, a call to fst might look like:
fst 〈LAZY:(g�→�→� a b)〉

This code invokes fst on a nested record: a record with tag LAZY whose single
field is a pair (in this case, the result of a function g; suppose g, a and b are
bound in the enclosing scope). The LAZY tag and code that uses it are generated
by the E♭-to-D translation, as is the code for the FORCE pseudo-macro. The point
is that force and delay are implemented inside the strict D language, with no
need to specify the meaning of laziness in D’s semantics or to add special support
for updates and thunks to the RTS. A thunk is just a function that ignores its
single argument and returns the value of the suspended computation.

Here is the code that implements the FORCE pseudo-macro for a variable x.
Figure 4 illustrates the data structures that this code manipulates.8

8 For readability, I have simplified D’s syntax. D does not have whole-record assign-
ment as shown on lines 4 and 7; rather, x1’s tag would be changed and its first field
would be mutated in separate operations. Also, D does not have explicit sequencing
as shown with a semicolon; rather, sequencing is implemented by let expressions.
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LAZY

anon x_1 x_2 x_3

LAZY

HOLE

IND

(:) x xs

1

2

3

Fig. 4. The lifetime of a thunk. In stage
1, a thunk is a record with the LAZY
tag that points to a thunk record with
free variables and a tag that indicates the
thunk code. In stage 2, during evaluation,
the first field of the LAZY record points
to a blackhole: a record with the HOLE
tag that points to itself. In stage 3, the
update has been done, and the record has
the IND (“indirection” tag), pointing to
the result.

case x as x1 of1

LAZY � let thunk : � = x1#1 in2

x1 ← 〈 HOLE, x1 〉;3

let result : � =4

thunkInt→� 0 in5

x1 ← 〈 IND, result 〉;6

result7

IND � x1#18

HOLE � error 09

default � x110

The first three case alternatives each correspond to one of the stages shown in
Figure 4. (The steps shown in the figure are standard [9]; it is just the implemen-
tation that is non-standard.) The LAZY case corresponds to stage 1 in the figure;
the HOLE case, to stage 2; and the IND case, to stage 3. (The code in the LAZY

case sets up a “blackhole” structure as shown in stage 2 of the figure, which is
necessary to prevent space leaks [32].) The default alternative (line 11) matches
if none of the other alternatives match. This allows any value to be used in a
context where a thunk is expected, which is useful for optimizations that change
lazy to strict evaluation where it can do so without altering semantics.

This explicit desugaring of laziness has both advantages and disadvantages.
It makes more information available for compiler transformations, and it allows
removing support for laziness from the RTS. But it increases code size: the code
for FORCE shown above is duplicated at every static reference to a lazy variable.

Related work Other studies in the Haskell literature have treated laziness
as a construct to be desugared away early in compilation. For example, the
Yale Haskell compiler compiled Haskell to a Lisp-like language [33]. It failed
to achieve good performance due to limitations of Common Lisp’s RTS [34].
Later, Faxén [35] and Boquist and Johnsson [36] built experimental optimizing
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compilers based on the principle that making laziness explicit in the language
allows more aggressive optimization. These projects contrast with my use of it to
simplify the RTS. Some recent projects [37] [38] [39] have used Boquist’s GRIN
back-end as well, though not with RTS verification as a specific goal.

6 Correctness

I developed a formal static and dynamic semantics for Core, E♭, and D. I proved
that the type systems of E♭ and of D are sound, and proved that the translation
from Core to E♭ preserves types. Here, type preservation means that a well-
typed Core expression is also well-typed when translated into E♭, and further,
the type of the resulting E♭ expression is the result of translating the original
Core expression’s type into an E♭ type. An analogous statement is true about
the translation from E♭ to D. For space reasons, I have omitted the formal
statements of the semantics and of the safety proofs. The proofs follow the usual
“safety = progress + preservation” equation [40], and are straighforward. These
proofs could be mechanized, which I leave for future work. Complete assurance
requires a proof that the D-to-GCminor translation and the GCminor-to-Cminor
translations preserve semantics. This work remains to be done.

7 Performance results

My performance goal is not to generate equally high-performance code as the
state of the art, but rather, to generate code that is both safe and usable. I define
the threshold of usability as performing roughly as well as interpreted code or
unoptimized code from a state-of-the-art compiler. Timings for a small sample
of programs suggest that with optimizations disabled, recent versions of GHC
produce code that is anywhere between 2 and 10 times slower than optimized
code. As I go on to show, my compiler generates code whose performance falls
within this range, as compared to the equivalent optimized GHC code.

Optimizations The näıve translations from Core to E♭ and from E♭ to D are
simple, but to achieve the performance goal, I had to implement quite a few
optimizations on E♭ and D code. Many of the optimizations are simple, and
most are based on well-known compiler optimizations for functional languages.
Note that proving the entire optimizing system correct requires proving that
each optimization is type-preserving. I have not done this; even so, we can still
be sure that the system generates well-typed code, since the typechecker runs
after each transformation. Notable optimizations included using more efficient
function calling conventions; code motion; eliminating delay and force operations
where they can be proven statically to be unnecessary; eliminating cases on
values whose tags are known statically; dead code elimination; and inlining. The
results in the next section apply to optimized code.
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Performance I ran the compiler (hereafter referred to as F2CM) on a sample of
programs from the “spectral” section of the Haskell “nofib” benchmark suite [41].
The spectral programs are small kernel examples from larger, real programs. One
program, queens, is from the “imaginary” section (toy programs). As a baseline,
I ran GHC on the same set of programs, with optimizations enabled. The ten
programs I chose are shown in Figure 5. Program size ranged from 26 to 685
lines of code (including whitespace and comments).

I had to modify most of the benchmarks slightly to avoid generating code with
foreign function calls or certain primitive operations the back-end does not sup-
port. I compiled the benchmarks with a modified version of the GHC standard
libraries that omits most I/O functions and others based on unsafe primitives or
foreign calls. Also, GHC’s Integer type (used for arbitrary-precision integers)
is implemented by foreign calls to the GMP library, so I replaced that library
with an alternative implementation, “integer-simple” [42]. Due to technical diffi-
culties, when compiling the baseline GHC programs, I did not link them against
the integer-simple library. So my comparisons may be skewed in favor of GHC,
at least for programs that make heavy use of Integers. Out of the 43 spectral
programs in the current version of nofib, F2CM can compile 14 programs. For
my experiments, I chose the ones that ran long enough to get reliable timings.

Figure 5 compares the running times of F2CM-compiled programs with those
of GHC. All the timing numbers (for both F2CM and GHC) refer to an arith-
metic mean over three runs. In general, F2CM generates significantly slower
code than GHC: in this set of benchmarks, two times slower in the best case
(multiplier) and nine times slower in the worst case (queens). With checks
enabled, F2CM-compiled programs run on average (geometric mean) 4.3 times
slower than the equivalent GHC-compiled programs. This is surprising, because
GHC does most of its optimizations as Core-to-Core passes, and I am using op-
timized Core [19]. However, GHC’s back-end is significantly optimized as well,
whereas Compcert’s back-end optimizes only lightly.

Runtime checks add significant but not overwhelming overhead: an average
(geometric mean) of 10%, with 18% in the worst case. Other experiments (whose
results are not shown here) suggested that checks on functions and on case ex-
pressions contributed about equally to the overhead of runtime checks. Con-
ceivably, even more checks could be eliminated through more aggressive static
analysis that identifies calls to known functions or cases on values built with
known tags. I suspect, but cannot prove, that enough information is present
statically in E♭ and D programs to obtain better performance; the compiler just
isn’t taking advantage of it yet. For example, statistics gathered in GHC showed
that for a sample of Haskell benchmarks, an average of 79% of calls were to
known functions [43]. It remains for future work to further clarify why the slow-
downs are as high as they are. For now, though, these experiments show that
F2CM generates code whose speed is within a factor of ten of GHC-generated
code, for these benchmarks. Thus, I conclude that compiling Core to Cminor is
a plausible strategy.
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Fig. 5. Comparing running times with F2CM and GHC. The y-axis shows time in
seconds. The “checks” bars (red) show the running times of F2CM-compiled programs
with safety checks enabled. The “nochecks” bars (green) show the running times of
F2CM-compiled programs with checks disabled. The “GHC” bars (blue) show the run-
ning times of the baseline GHC-compiled versions of the programs. In the experiments,
F2CM compiled Core programs generated by GHC 6.9.20080918 (a development ver-
sion of GHC, to which I made the necessary library changes), and the baseline GHC
programs were from GHC 6.10.1. I always ran GHC with the -O2 optimization flag.
I ran both sets of programs with 128 MB of heap space. I ran all the programs on a
Macintosh PowerBook G4 with a 1 GHz PowerPC processor and 512 MB of physical
RAM, running Mac OS version 10.5.4.

8 Conclusion

What is the cost of assurance? My results show that safety checks add overhead
of up to 18%, implying that the explicit safety features of the compiler add low
overhead. Because I designed the compiler for simplicity, it may have features
that are implicitly necessary for safety and that contribute additional cost. This
cost is harder to measure. Even so, the overall slowdown compared to GHC was
still less than a factor of ten for all the examples I tried, meeting my performance
goal. Since I know of no other safety-preserving compilers for Haskell, my results
comprise the first set of performance data for such a compiler.

Does simplicity really conflict with performance? So far, compiler designers
have lacked compelling reasons to design for verifiability, and so no one has
been motivated to answer this question. I have presented a compiler that, while
simple, contributes no obvious intrinsic sources of overhead other than runtime
checks. Though the overall overhead is high, I have not answered the question
of whether this overhead is intrinsic to safety-preserving compilation or whether
it can be overcome by cleverer compilation strategies. Only further performance
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analysis and profiling can answer the question of whether this combination can
perform well enough to persuade users to adopt it.

When you pay the cost of assurance, what do you get in return? Some people
might wonder whether protection against the seemingly unlikely possibility of a
bug in a production compiler or garbage collector is worth paying any additional
cost. Whether safety is worth paying for depends on the cost of a safety violation.
In a time of clickwrap licenses that shield software developers from accountability
for bugs, developers may treat the cost of distributing unreliable code as an
externality. If someday users’ expectations for software reliability rise, developers
will have to internalize this externality and the idea of trading performance for
safety may become more compelling. There can be no ironclad safety guarantees,
because safety proofs and proof checkers can contain errors as well, but the
smaller the base of trusted code becomes, the more confident developers can be
that their software will do what they expect it to.
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